Home
Contact WebMasterAbout Us
ProgramBookDownloadsPublicationsNews

Nonequilibrium Model Publications

This page contains references related to nonequilibrium models, sometimes also referred to as "rate-based" models, and provides further reading material for the article "Real-World Modeling of Distillation" in Chemical Engineering Progress, July 2003, pages 28-39. We divided our reference list into several sections for easier perusal and quick access by subject. Chronological or alphabetical lists are avalaible at the end. The reference list was collected by multiple people and is quite extensive and we keep updating it (see the date stamp below and at the bottom of this page). However, such lists are inherently incomplete and therefore, if you have a reference we missed, please forward it via e-mail to Harry Kooijman. Suggestions and comments are also welcome.

Index

NEQ Programs and Software Packages:

  1. ChemSep:

    ChemSep (TM) incorporates some of the most recent developments in nonequilibrium modeling. Many correlations for the mass transfer coefficients, interfacial area, and flow models are built into ChemSep. It also contains a variety of thermodynamic and physical property models. ChemSep can also provide a detailed design of the equipment selected for the simulation. This allows the program to simulate columns for preliminary design purposes. It has a limited component library but allows the user to add components with a databank manager. ChemSep is available through CACHE for educational use only. For more information see www.chemsep.org and:

    • H.A. Kooijman, R. Taylor, "ChemSep - Another Software System for the simulation of Separation Processes", CACHE News, No. 35, Fall (1992), pp. 1-9.
    • R. Taylor, H.A. Kooijman, "Modeling Separation Processes with Nonequilibrium Models", Can. Chem. News, Vol. 47, No. 9 (1995), pp. 24-27.
    • R. Taylor, H.A. Kooijman, "ChemSep Release v3.1", CACHE News, No. 41, Fall (1995), pp. 13-19.
    • H. Kooijman, R. Taylor, "ChemProp", CACHE News, No. 44, Spring (1997), pp. 11-13.
    • J.D. Seader, E.J. Henley, Separation Process Principles, John Wiley, New York (1998) http://www.che.utah.edu/~seader/. Chapter 12. Rate-Based Models for Distillation.
    • H.A. Kooijman, R. Taylor, The ChemSep Book, Books on Demand, Norderstedt, Germany (2001) http://www.chemsep.org/book/index.html.
    • H. Kooijman, R. Taylor, ChemSep -- Yet Another Tool for Distillation Modelling, AIChE Meeting, March (2002).

  2. Ratefrac:

    AspenTech and Koch Engineering, Inc collaborated in 1989 and developed "RateFrac", which was based on the nonequilibrium model described in the original papers by Krishnamurthy and Taylor with the important additional capability of being able to handle systems with chemical reactions. The influence of reaction on mass transfer was modeled by means of enhancement factors. Ratefrac had one mass transfer coefficient model for each type of column internal but it has the facilities to add user models for the calculation of transfer coefficients, pressure drop, and interfacial area.

    Currently, RateFrac is offered by SimSci-Esscor within the flowsheeter PRO/II.

  3. RateSep:

    After discontinueing the licensing of RateFrac, AspenTech developed a new model, called RateSep (2018).

  4. ChemCad:

    Chemstations Inc. software contains a nonequilibrium model for both steady state and dynamic simulation.

  5. Programs for Research

    The following list is a compilation of published nonequilibrium models that were developed as part of research projects. These are generally not available except to those researchers and potentially their industrial sponsers:

    • A. Zimmermann, C. Gourdon, X. Joulia, A. Gorak, C. Casamatta, "Simulation of a Multicomponent Extraction Process by a Nonequilibrium Stage Model incorporating a Drop Population Model", ESCAPE I (1992).
    • Z. Yuxiang, X. Xien, "Study on Catalytic Distillatiion Processes. Part I. Mass Transfer Characteristics in Catalist bed within the Column", Trans. I. Chem. E., Vol. 70 (1992), pp. 459-464.
    • Z. Yuxiang, X. Xien, "Study on Catalytic Distillatiion Processes. Quasi-Homogeneous and Rate-Based Model", Trans. I. Chem. E., Vol. 70 (1992), pp. 465-470.
    • H. Mori, A. Oda, T. Aragaki, Y. Kunimoto, "Packed column distillation simulatiion with a rate-based method", J. Chem. Eng. Japan., Vol. 29, No. 2 (1996), pp. 307-314.
    • M.H. Pescarini, A.A.C. Barros, M.R. Wolf-Maciel, "Development of a software for simulating separation processes using a nonequilibrium stage model", Comput. Chem. Eng., Vol. 20, No. Suppl. A, European Symposium on Computer Aided Process Engineering--6, 1996 (1996), pp. S279-S284.
    • H. Subawalla, J.R. Fair, "Design Guidelines for Solid-Catalyzed Reactive Distillation Systems", Industrial & Engineering Chemistry Research, Vol. 38, No. 10 (1999), pp. 3696-3709.
    • M. Schenk, R. gani, D. Boggle, E.N. Pistikopoulous, "A hybrid modelling approach for separation systems", submitted to Chem. Eng. Ind. Res. (1999) (1999).
    • Prof. Gorak (University of Dortmund, see below) and others worked on the program "DESIGNER" developed under the BRITE-EURAM program, sponsored by the EU industry (BP Chemicals, Hoechst, BASF, Snamprogetti, and Neste Oy) and universities (Dortmund, Clausthal, Aston, Bath, and Helsinki). The program is proprietary and discussed in various papers:
      • R. Schneider, E.Y. Kenig, A. Gorak, "Dynamic modelling of reactive absorption with the Maxwell-Stefan approach", Trans. I.Chem.E., Vol. 77, No. A (1999), pp. 633-638.
      • E.Y. Kenig, K. Jakobsson, P. Banik, J. Aittamaa, A. Gorak, Chem. Eng. Sci., Vol. 54 (1999), pp. 1347-1352.
      • L.U. Kreul, A. Gorak, P.I. Barton, "Dynamic Rate-Based Model for Multicomponent Batch Distillation", AIChE J., Vol. 45, No. 9, September (1999), pp. 1953-1962.
      • V. Alopaeus, J. Aittamaa, "Appropiate Simplifications in Calculation of Mass Transfer in a Multicomponent Rate-Based Distillation Tray Model", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 4336-4345.
      • E.Y. Kenig, H. Baeder, A. Gorak, B. Bessling, T. Adrian, H. Schoenmakers, "Investigation of Ethyl Acetate Reactive Distillation Process", Chem. Eng. Sci., Vol. 56 (2001), pp. 6185-6193.
    • G. Pagani, A. D'Arminio Monforte, G. Bianchi, "Transfer-Based Models Implementation in an Equation Oriented Package", Comp. Chem. Eng., Vol. 25 (2001), pp. 1493-1511.
    • E. Eckert, T. Vanek, "Some Aspects of Rate-Based Modelling and Simulation of Three-Phase Distillation Columns", Comp. Chem. Eng., Vol. 25 (2001), pp. 603-612.
    • P. Gunaseelan, P.C. Wankat, "Transient pressure and flow predictions for concentrated packed absorbers using a dynamic nonequilibrium model", Ind. Eng. Chem. Res., Vol. 41 (2002), pp. 5775-5788.

Nonequilibrium Models:

  • R. Krishnamurthy, R. Taylor, "A nonequilibrium stage model of multicomponent separation processes. Part I: model description and method of solution", AIChE J., Vol. 31 (1985), pp. 449-456.
  • R. Krishnamurthy, R. Taylor, "A nonequilibrium stage model of multicomponent separation processes. Part II: comparison with experiment", AIChE J., Vol. 31, No. 3 (1985), pp. 456-65.
  • R. Krishnamurthy, R. Taylor, "A nonequilibrium stage model of multicomponent separation processes. Part III: the influence of unequal component efficiencies in process design problems", AIChE J., Vol. 31 (1985), pp. 1973-1985.
  • R. Krishnamurthy, R. Taylor, "Simulation of packed distillation and absorption columns", Ind. Eng. Chem. Process Des. Dev., Vol. 24, No. 3 (1985), pp. 513-24.
  • R. Krishnamurthy, R. Taylor, "Absorber simulation and design using a nonequilibrium stage model", Can. J. Chem. Eng., Vol. 64, No. 1 (1986), pp. 96-105.
  • R. Krishnamurthy, Development of a nonequilibrium stage model and its application to multicomponent separation process simulation and design, PhD. Thesis (1984).
  • J. Powers, Azeotropic and extractive distillation calculations using a nonequilibrium stage model, MS. Thesis, Clarkson University, NY (1986).
  • M.S. Sivasubramanian, R. Taylor, R. Krishnamurthy, "A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part IV: A Novel Approach to Packed Column Design", AIChE J., Vol. 33, No. 2 (1987), pp. 325-327.
  • J.D. Seader, "The Rate-Based Approach for Modeling Staged Separations", Chem. Eng. Prog., Vol. 85 (1989), pp. 41-49.
  • M. Lao, Nonequilibrium models for multiphase separation processes, PhD. Thesis, Clarkson University, NY (1990).
  • R. Taylor, H.A. Kooijman, M.R. Woodman, Industrial Applications of a NonEquilibrium Model of Distillation and Absorption Operations, I.Chem.E. Symp. Ser., No. 128, Birmingham, UK, September (1992), pp. A415-427.
  • R. Taylor, R. Krishna, Multicomponent Mass Transfer, John Wiley, New York (1993).
  • R. Taylor, H.A. Kooijman, J.S. Hung, "A 2nd Generation Nonequilibrium Model for Computer-Simulation of Multicomponent Separation Processes", Comput. Chem. Eng., Vol. 18 (1994), pp. 205-217.
  • H.A. Kooijman, Dynamic Nonequilibrium Column Simulation, PhD. Thesis, Clarkson University, NY (1995) http://www.chemsep.org/downloads/documentation.html.
  • S. Pelkonen, A. Gorak, H.A. Kooijman, R. Taylor, Operation of a packed distillation column: Modelling and Experiments, I.Chem.E. Symp. Ser., Maastricht, NL, September (1997).
  • S. Pelkonen, Multicomponent Mass Transfer in Packed Distillation Columns, PhD. Thesis, Dortmund University, Germany (1997).
  • J.A. Wesselingh, R. Krishna, Mass Transfer in Multicomponent Mixtures, Delft University Press, Delft (2000).

Reactive Distillation:

  • J. Zhu, F. Shen, "Study on the non-equilibrium stage model for reactive distillation processes", Jisuanji Yu Yingyong Huaxue, Vol. 11, No. 3 (1994), pp. 167-73.
  • J. Qin, X. Qiao, C. Zheng, "Stimulation of fluidized catalytic reaction distillation for synthesis of methylal using nonequilibrium stage model", Nanjing Huagong Daxue Xuebao, Vol. 18, No. Zengkan (1996), pp. 1-8.
  • S. Yu, A. Zhou, Q. Tan, "Simulation of multistage catalytic stripping with a nonequilibrium stage model", Computers & Chemical Engineering, Vol. 21, No. 4 (1996), pp. 409-415.
  • R. Baur, A.P. Higler, R. Taylor, R. Krishna, "Comparison of Equilibrium Stage and Nonequilibrium Stage Models for Reactive Distillation", Chem. Eng. J., Vol. 3501 (1999), pp. 1-15.
  • J. Ellenberger, R. Krishna, "Counter-Current Operation of Structured Catalytically Packed Columns: Pressure Drop, Holdup and Mixing", Chem. Eng. Sci., Vol. 54 (1999), pp. 1339-1345.
  • A. Higler, R. Taylor, R. Krishna, "Modeling of a reactive separation process using a nonequilibrium stage model", Computers & Chemical Engineering, Vol. 22, No. Suppl., European Symposium on Computer Aided Process Engineering--8, 1998 (1998), pp. S111-S118.
  • A.P. Higler, R. Taylor, R. Krishna, "Nonequilibrium Modelling of Reactive Distillation: Multiple steady states in MTBE synthesis", Chem. Eng. Sci., Vol. 54 (1999), pp. 1389-1395.
  • A.P. Higler, R. Krishna, J., Ellenberger, R. Taylor, "Counter-current operation of a structured catalytically packed bed reactor: Liquid phase mixing and mass transfer", Chem. Eng. Sci., Vol. 54 (1999), pp. 5145-5152.
  • A.P. Higler, R. Krishna, J., Ellenberger, R. Taylor, "Counter-current operation of a structured catalytically packed bed reactor: Liquid phase mixing and mass transfer", Chem. Eng. Sci., Vol. 54 (1999), pp. 5145-5152.
  • A.P. Higler, Modeling Reactive Distillation, PhD. Thesis, Clarkson University, NY (1999).
  • P. Moritz, H. Hasse, "Fluid Dynamics in reactive distillation packing Katapak-S", Chem. Eng. Sci., Vol. 54 (1999), pp. 1367-1374.
  • H. Subawalla, J.R. Fair, "Design Guidelines for Solid-Catalyzed Reactive Distillation Systems", Industrial & Engineering Chemistry Research, Vol. 38, No. 10 (1999), pp. 3696-3709.
  • R. Baur, A.P. Higler, R. Taylor, R. Krishna,, "Comparison of equilibrium stage and nonequilibrium stage models for reactive distillation", Chemical Engineering Journal (Lausanne), Vol. 76, No. 1 (2000), pp. 33-47.
  • A. Higler, R. Krishna, R. Taylor, "Nonequilibrium Modeling of Reactive Distillation: A Dusty Fluid Model for Heterogeneously Catalyzed Processes", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 1596-1607.
  • N.P. Muller, H. Segura, "An overall rate-based stage model for cross flow distillation columns", Chemical Engineering Science, Vol. 55, No. 13 (2000), pp. 2515-2528.
  • R. Taylor, R. Krishna, "Modelling Reactive Distillation", Chem. Eng. Sci., Vol. 55 (2000), pp. 5183-5229.
  • R. Baur, Modeling Reactive Distillation Dynamics, PhD. Thesis, Clarkson University, NY (2000).
  • R. Baur, R. Taylor, R. Krishna, "Influence of column hardware on the performance of reactive distillation columns", Catalysis Today, Vol. 66 (2001), pp. 225-232.
  • R. Baur, R. Taylor, R. Krishna, "Dynamic behaviour of reactive distillation tray columns described with a nonequilibrium cell model", Chem. Eng. Sci., Vol. 56 (2001), pp. 1721-1729.
  • V.A. Danilov, A.G. Laptev, S.V. Karpeev, A. Vogelpohl, "Modelling of Multicomponent Reactive Distillation in a Tray Column" (2001) http://www.acadjournal.com/2001/V5/part2/p1.
  • A. Gorak, A. Hoffmann, "Catalytic distillation in structured packings: methyl acetate synthesis", AIChE Journal, Vol. 47, No. 5 (2001), pp. 1067-1076.
  • E.Y. Kenig, H. Baeder, A. Gorak, B. Bessling, T. Adrian, "Investigation of ethyl acetate reactive distillation process", Chem. Eng. Sci., Vol. 56 (2001), pp. 6185-6193.
  • W. Qian, Z. Wang, F. Wei, J. Zhang, "Simulation of catalytic distillation process for cumene synthesis", Qinghua Daxue Xuebao, Ziran Kexueban, Vol. 41, No. 12 (2001), pp. 41-43, 64.
  • W. Qian, Z. Wang, F. Wei, Y. Jin, J. Zhang, "Nonequilibrium-stage modeling of catalytic distillation for ethylbenzene synthesis", Huagong Xuebao (Chinese Edition), Vol. 52, No. 10 (2001), pp. 853-857.
  • T. Qiu, L.E. Wang, Y.-X. Wu, Z.-S. Zhao, "Effective interfacial area within catalytic distillation column", Fuzhou Daxue Xuebao, Ziran Kexueban, Vol. 29, No. 1 (2001), pp. 93-96.
  • H. Okur, M. Bayramoglu, "The Effect of the Liquid-Phase Activity Model on the Simulation of Ethyl Acetate Production by Reactive Distillation", Ind. Eng. Chem. Res., Vol. 40 (2001), pp. 3639-3646.
  • C. Wang, "Study on hydrolysis of methyl acetate in a catalytic distillation column", Chinese Journal of Chemical Engineering, Vol. 9, No. 4 (2001), pp. 382-387.
  • K. Jakobsson, A. Pyhalahti, S. Pakkanen, K. Keskinen, J. Aittamaa, "Modelling of a Side Reactor Configuration Combining Reaction and Distillation", Chem. Eng. Sci. (2002).
  • R. Baur, R. Krishna, "Hardware selection and design aspects for reactive distillation columns. A case study on synthesis of TAME", Chemical Engineering and Processing, Vol. 41, No. 5 (2002), pp. 445-462.
  • C. Noeres, A. Hoffmann, A. Gorak, "Reactive Distillation: Non-Ideal Flow Behaviour of the Liquid Phase in Structured Catalytic Packings", Chem. Eng. Sci. (2002).
  • J. Peng, S. Lextrait, T.F. Edgar, R.B. Eldrige, "A Comparison of Steady-State Equilibrium and Rate-Based Models for Packed Reactive Distillation Columns", Ind. Eng. Chem. Res., Vol. 41 (2002), pp. 2735-2744.
  • K. Sundmacher, A. Kienle, Reactive Distillation. Status and Future Directions., Wiley-VCH Verlag, Weinheim (2003).
  • M. Kloeker, E. Kenig, A. Gorak, Experimental and Theoretical Studies of the TAME Synthesis by Reactive Distillation, ESCAPE 13, June (2003), pp. 713-718.
  • G. Bozga, G. Bumbac, V. Plescu, I. Muja, C.D. Popescu, Modelling and Simulation of Kinetics and Operation for the TAME Synthesis by Catalytic Distillation, ESCAPE 13, June (2003), pp. 575-580.
  • N. Poth, D. Brusis, J. Stichlmair, Rigorous Optimization of Reactive Distillation in GAMS with the Use of External Functions, ESCAPE 13, June (2003), pp. 869-874.
  • J.M. Van Baten, R. Krishna, "Gas and Liquid Phase Mass Transfer Within KATAPAK-S Structures Studied Using CFD Simulations", Chem. Eng. Sci..

Reactive Absorption:

  • V. Kaspar, E. Eckert, T. Vanek, M. Marek, "Mathematical modeling of absorption with chemical reaction in the liquid phase in a tray column", Collect. Czech. Chem. Commun., Vol. 53, No. 8 (1988), pp. 1688-710.
  • M.A. Pacheco, G.T. Rochelle, "Rate-based modeling of reactive absorption of CO2 and H2S into aqueous methyldiethanolamine", Ind. Eng. Chem. Res., Vol. 37 (1998), pp. 4107-4117.
  • M. Zhao, J. Yuan, S. Qiao, "Nonequilibrium simulation for gas absorption with complex reactions in multistage column", Proc. Int. Conf. Pet. Refin. Petrochem. Process., Vol. 2 (1991), pp. 999-1006.
  • T.R. Carey, J.E. Hermes, G.T. Rochelle, "A model of acid gas absorption/stripping using methyldiethanolamine with added acid", Gas Sep. Purif., Vol. 5, No. 2 (1991), pp. 95-109.
  • E.Y. Kenig, A. Gorak, "A film model based approach for simulation of multicomponent reactive separation", Chem. Eng. Process., Vol. 34 (1995), pp. 97-103.
  • E.Y. Kenig, U. Wiesner, A. Gorak, "Modeling of reactive absorption using the Maxwell-Stefan equations", Ind. Eng. Chem. Res., Vol. 36 (1997), pp. 4425-4434.
  • E.Y. Kenig, R. Schneider, A. Gorak, "Reactive absorption: Optimal process design via optimal modelling", Chem. Eng. Sci., Vol. 56 (2001), pp. 343-350.
  • C. Noeres, E.Y. Kenig, A. Gorak, Chem. Eng. Process., Vol. 42 (2003), pp. 157-178.
  • E. Y. Kenig, L. Kucka, A. Gorak, "Rigorous Modeling of Reactive Absorption Processes", Chem. Eng. Technol., Vol. 26, No. 6 (2003), pp. 631-646.

Dynamic Models:

  • H.A. Kooijman, R. Taylor, "A Nonequilibrium Model for Dynamic Simulation of Tray Distillation-Columns", AIChE J., Vol. 41 (1995), pp. 1852-1863.
  • Y. Qin, Y. Xu, C. Fang, J. Tang, "Dynamic nonequilibrium stage model of multicomponent distillation processes", Huagong Xuebao (Chinese Edition), Vol. 48, No. 2 (1997), pp. 166-174.
  • 8) J. Li, K. Fischer, J. Gmehling, "Prediction of vapor-liquid equilibria for assymmetric systems at low and high pressures with the PSRK model", Fluid Phase Equilibria, Vol. 143 (1998), pp. 71-82.
  • R. Schneider, E.Y. Kenig, A. Gorak, "Dynamic modelling of reactive absorption with the Maxwell-Stefan approach", Trans. I.Chem.E., Vol. 77, No. A (1999), pp. 633-638.
  • R. Baur, R. Taylor, R. Krishna, "Dynamic Behavior of Reactive Distillation Columns Described by a Nonequilibrium Stage Model", Chem. Eng. Sci., Vol. 56 (2001), pp. 1-18.
  • R. Baur, R. Taylor, R. Krishna, "Dynamic behaviour of reactive distillation columns described by a nonequilibrium stage model", Chem. Eng. Sci., Vol. 56 (2001), pp. 2085-2102.
  • H. Arellano-Garcia, W. Martini, M. Wendt, P. Li, G. Wozny, Robust Optimization of a Reactive Distillation Process under Uncertaincy, ESCAPE 13, June (2003), pp. 551-556.

Cell, Flow and CFD Models:

  • D.L. Bennett, H.J. Grimm, "Eddy Diffusivity for Distillation Sieve Trays", AIChE J., Vol. 37, No. 4 (1991), pp. 589-596.
  • H.A. Kooijman, R. Taylor, "Modelling Mass Transfer in Multicomponent Distillation", Chem. Eng. J., Vol. 57, No. 2 (1995), pp. 177-188.
  • A. Higler, R. Krishna, R. Taylor, "Nonequilibrium cell model for packed distillation columns - The influence of maldistribution", Ind. Eng. Chem. Res., Vol. 38 (1999), pp. 3988-3999.
  • A. Higler, R. Krishna, R. Taylor, "Nonequilibrium cell model for multicomponent (Reactive) separation processes", AIChE J., Vol. 45 (1999), pp. 2357-2370.
  • R. Krishna, J.M. Van Baten, J. Ellenberger, A.P. Higler, R. Taylor, "CFD Simulations of Sieve Tray Hydrodynamics", Trans. I. Chem. E., Vol. 77, No. A (1999), pp. 639-646.
  • R. Macias-Salinas, J.R Fair, "Axial Mixing in Modern Packings, Gas and Liquid Phases: I. Single-Phase Flow", AIChE J., Vol. 45, No. 2, Februrary (1999), pp. 222-239.
  • R. Baur, R. Taylor, R. Krishna, "Development of a Dynamic Nonequilibrium Cell Model for Reactive Distillation Tray Columns", Chem. Eng. Sci., Vol. 55 (2000), pp. 6139-6154.
  • R. Macias-Salinas, J.R. Fair, "Axial Mixing in Modern Packings, Gas, and Liquid Phases: II. Two-Phase Flow", AIChE J., Vol. 46, No. 1, January (2000), pp. 79-91.
  • N.P. Mueller, H. Segura, "An Overall Rate-Based Stage Model for Cross Flow Distillation Columns", Chem. Eng. Sci., Vol. 55 (2000), pp. 2515-2528.
  • R. Baur, R. Taylor, R. Krishna, "Dynamic behaviour of reactive distillation columns described by a nonequilibrium stage model", Chem. Eng. Sci., Vol. 56 (2001), pp. 2085-2102.
  • R. Macias-Salinas, J.R. Fair, "Axial Mixing Effects in Packed Gas-Liquid Contactors", Ind. Eng. Chem. Res., Vol. 41 (2002), pp. 3429-3452.

Mass Transfer Modelling:

  • E.V. Murphree, "Rectifying column calculations with particular reference to n component mixtures", Ind. Eng. Chem., Vol. 17 (1925), pp. 747-750.
  • M. Nord, "Plate Efficiencies of Benzene - Toluene - Xylene Systems in Distillation", Trans. AIChE., Vol. 42 (1946), pp. 863-881.
  • H.L. Toor, "Prediction of Efficiencies and Mass Transfer on a Stage with Multicomponent Systems", AIChE J., Vol. 10 (1964), pp. 545-547.
  • G.L. Standart, "Comparison of Murphree Efficiencies with Vaporization Efficiencies", Chem. Eng. Sci., Vol. 26 (1971), pp. 985-988.
  • F. Kayihan, O.C. Sandall, D.A. Mellichamp, "Simultaneous Heat and Mass Transfer in Binary Distillation. I - Theory", Chem. Eng. Sci., Vol. 30 (1975), pp. 1333-1339.
  • F. Kayihan, O.C. Sandall, D.A. Mellichamp, "Simultaneous Heat and Mass Transfer in Binary Distillation. II - Experiment", Chem. Eng. Sci., Vol. 32 (1977), pp. 747-754.
  • R. Krishna, H.F. Martinez, R. Sreedhar, G.L. Standart, "Murphree Point Efficiencies in Multicomponent Systems", Trans. I.Chem.E., Vol. 55 (1977), pp. 178-183.
  • R. Krishna, C.B. Panchal, "Condensation of Binary Mixtures in the Presence of an Inert Gas", Chem. Eng. Sci., Vol. 32 (1977), pp. 741-745.
  • A.G> Medina, N. Ashton, C. McDermott, "Murphree and Vaporization Efficiencies in Multicomponent Distillation", Chem. Eng. Sci., Vol. 33 (1978), pp. 331-339.
  • A.G. Medina, N. Ashton, C. McDermott, "Hausen and Murphree Efficiencies in Binary and Multicomponent Distillation", Chem. Eng. Sci., Vol. 34 (1979), pp. 1105-1112.
  • M.J. Lockett, R.D. Kirkpatrick, M.S. Uddin, "Froth Regime Point Efficiency for Gas-Film Controlled Mass Transfer on a Two-dimensional Sieve Tray", Trans. I.Chem.E., Vol. 57 (1979), pp. 25-34.
  • M.M. Dribicka, O.C. Sandall, "Simultaneous Heat and Mass Transfer for Multicomponent Distillation in a Wetted Wall Column", Chem. Eng. Sci., Vol. 34 (1979), pp. 733-739.
  • R. Cornelisse, A.A.C.M. Beenackers, F.P.H. Van Beckum, W.P.M. Van Swaaij, "Numerical calculation of simultaneous mass transfer of two gases accompanied by complex reversible reactions", Chem. Eng. Sci., Vol. 35 (1980), pp. 1245-1260.
  • R. Krishna, R.M. Salomo, M.A. Rahman, "Ternary Mass Transfer in A Wetted Wall Column. Significance of Diffusional Interactions Part II. Equimolar Diffusion", Trans. I.Chem.E., Vol. 59 (1981), pp. 44-53.
  • J.L. Bravo, J.R. Fair, "Generalized Correlation for Mass Transfer in Packed Distillation Columns", Ind. Eng. Chem. Process Des. Dev., Vol. 21 (1982), pp. 162-170.
  • H. Chan, J.R. Fair, "Prediction of Point Efficiencies on Sieve Trays. 2. Multicomponent Systems", Ind. Eng. Chem. Proc. Des. Dev., Vol. 23 (1983), pp. 820-826.
  • H. Chan, J.R. Fair, "Prediction of Point Efficiencies on Sieve Trays. 1. Binary Systems", Ind. Eng. Chem. Proc. Des. Dev., Vol. 23 (1983), pp. 814-819.
  • A. Gorak, A. Vogelpohl, "Experimental Study of Ternary Distillation in a Packed Column", Separ. Sci. & Technol., Vol. 20 (1985), pp. 33-61.
  • R. Krishna, "Model for Prediction of Point Efficiencies for Multicomponent Distillation", Chem. Eng. Res. Des., Vol. 63 (1985), pp. 312-322.
  • A. Gorak, A. Kraslawski, A. Vogelpohl, "Simulation and Optimization of Multicomponent Distillation", Chem. Ing. Tech., Vol. 59 (1987), pp. 95-106.
  • T.P. Ognisty, M. Sakata, "Multicomponent Diffusion: Theory vs. Industrial Data", Chem. Eng. Prog., Vol. 83, No. 3 (1987), pp. 60-65.
  • G.X. Chen, A. Afacan, C. Xu, K.T. Chuang, "Performance of Combined Mesh Packing and Sieve Tray in Distillation", Can. J. Chem. Eng., Vol. 68, June (1990), pp. 382-386.
  • M. Prado, J.R. Fair, "Fundamental Model for the Prediction of Sieve Tray Efficiency", Ind. Eng. Chem. Res., Vol. 29, No. 6 (1990), pp. 1031-1042.
  • G.X Chen, K.T. Chuang, C. Chien, Y. Ye, "Mass Transfer and Hydraulics of Packed Sieve Trays", Gas Sep. Pur., Vol. 6, No. 4 (1992), pp. 207-213.
  • X. Xu, F. Shen, "Use of evaluation of the transfer rate for calculation of binary mass-transfer coefficients and modeling of multicomponent distillation", Teor. Osn. Khim. Tekhnol., Vol. 26, No. 4 (1992), pp. 486-93.
  • C. Xu, M. Zhou, Ming G. Yu, "Estimation of multicomponent mass transfer coefficients of hybrid gas-liquid separation process", Tianjin Daxue Xuebao, Vol. 28, No. 2 (1995), pp. 190-4.
  • X. Xu, Y. Zheng, B. Wang, "Available interphase area within a catalytic distillation column", Huagong Xuebao (Chin. Ed.), Vol. 47, No. 4 (1996), pp. 505-509.
  • R. Krishna, J.A. Wesselingh, "The Maxwell-Stefan approach to mass transfer", Chem. Eng. Sci., Vol. 52 (1997), pp. 861-911.
  • E.Y. Kenig, Comp. Chem. Eng., Vol. 21 (1997), pp. S355-S360.
  • R. Billet, M. Schultes, "Prediction of Mass Transfer Columns with Dumped and Arranged Packings", Trans. I. Chem. E., Vol. 77, No. A (1999), pp. 498-504.
  • J.C. Crause, I. Nieuwoudt, "Mass Transfer in a Short Wetted-Wall Column. 1. Pure Components", Ind. Eng. Chem. Res., Vol. 38 (1999), pp. 4928-4932.
  • I. Nieuwoudt, J.C. Crause, "Mass Transfer in a Short Wetted-Wall Column. 2. Binary Systems", Ind. Eng. Chem. Res., Vol. 38 (1999), pp. 4933-4937.
  • J.A. Wesselingh, A.M. Bollen, "Single Particles, Bubbles and Drops", Trans. I. Chem. E., Vol. 77, No. A (1999), pp. 89-96.
  • E.Y. Kenig, F. Butzmann, L. Kucka, A. Gorak, "Comparison of numerical and analytical solutions of a multicomponent reaction-mass-transfer problem in terms of the film model", Chem. Eng. Sci., Vol. 55 (2000), pp. 1483-1496.
  • A.A. Alhusseini, J.C. Chen, "Transport Phenomena in Turbulent Falling Films", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 2091-2100.
  • M.J.W. Frank, J.A.M. Kuipers, W.P.M. Van Swaaij, "How to Use Mass Transfer Correlations for Concentrated Binary Solutions", Chem. Eng. Sci., Vol. 55 (2000), pp. 3739-3742.
  • J.A. Garcia, J.R. Fair, "A Fundamental Model for the Prediction of Distillation Sieve Tray Efficiency. 1. Database Development", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 1809-1817.
  • J.A. Garcia, J.R. Fair, "A Fundamental Model for the Prediction of Distillation Sieve Tray Efficiency. 2. Model Development and Validation", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 1818-1825.
  • H.R. Mortaheb, H. Kosuge, K. Asano, "Hydrodynamics and Mass Transfer in Heterogeneous Distillation with Sieve Tray Column", Chem. Eng. J., Vol. 88 (2002), pp. 59-69.
  • W. Last, J. Stichlmair, "Determination of Mass Transfer Parameters by Means of Chemical Absorption", Chem. Eng. Technol., Vol. 25, No. 4 (2002), pp. 385-391.
  • V.J. Pohjola, J. Tanskanen, V. Alopaeus, "The Issue of High Flux Correction in Multicomponent Reactive and Ordinary Distillation", Chem. Eng. Sci. (2002).

Distillation Boundary Crossing:

  • R. Baur, R. Taylor, R. Krishna, J.A. Copati, "Influence of mass transfer in distillation of mixtures with a distillation boundary", Chem. Eng. Res. Des. (Trans.I.Chem.E.), Vol. 77 (1999), pp. 561-565.
  • P.A.M. Springer, R. Krishna, "Crossing of boundaries in ternary azeotropic distillation: Influence of interphase mass transfer", International Communications in Heat and Mass Transfer, Vol. 28, No. 3 (2001), pp. 347-356.
  • P.A.M. Springer, B. Buttinger, R. Baur, R. Krishna, "Crossing of the distillation boundary in homogeneous azeotropic distillation: Influence of interphase mass transfer", Ind. Eng. Chem. Res., Vol. 41 (2002), pp. 1621-1631.
  • P.A.M. Springer, R. Baur, R. Krishna, "Influence of interphase mass transfer on the composition trajectories and crossing of boundaries in ternary azeotropic distillation", Separation and Purification Technology, Vol. 29, No. 1 (2002), pp. 1-13.
  • P.A.M. Springer, R. Baur, R. Krishna, "Composition trajectories for heterogeneous azeotropic distillation in a bubble-cap tray column: Influence of mass transfer", Chem. Eng. Res. Des., Vol. 81 (2003), pp. 413-426.

Solution Techniques:

  • J.D. Seader, "The B. C. (before computers) and A. D. of equilibrium-stage operations", Chem. Eng. Educ., Vol. 19, No. 2 (1985), pp. 88-103.
  • M.F. Powers, D.J. Vickery, A. Arehole, R. Taylor, "A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part V: Computational Methods for Solving the Model equations", Comp. Chem. Engng., Vol. 12, No. 12 (1988), pp. 1229-1241.
  • S. Agarwal, R. Taylor, "Distillation Column Design Calculations Using a Nonequilibrium Model", Ind. Eng. Chem. Res., Vol. 33 (1994), pp. 2631-2636.
  • R. Taylor, H.A. Kooijman, J.S. Hung, "A 2nd Generation Nonequilibrium Model for Computer-Simulation of Multicomponent Separation Processes", Comput. Chem. Eng., Vol. 18 (1994), pp. 205-217.
  • R. Taylor, A. Lucia, Modeling and analysis of multi component separation processes, AIChE Symp. Ser., No. Fourth International Conference on Foundations of Computer-Aided Process Design, 1994 (1995), pp. 19-28.
  • R. Gani, E. Bek-Pedersen, "Simple New Algorithm for Distillation Column Design", AIChE J., Vol. 46, No. 6, June (2000), pp. 1271-1274.

LL and VLL Modelling:

  • M Lao, J.P. Kingsley, R. Krishnamurthy, R. Taylor, "A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part VI: Simulation of Liquid-Liquid Extraction", Comp. Chem. Comm., Vol. 86 (1989), pp. 73-89.
  • W. Schermuly, E. Blass, "Three-Component Mass Transfer in Liquid-Liquid Extraction with the System Glycerol-Acetone-Water Part 2: Calculation and Experimental Investigation of the Three-Component Mass Transfer in a Countercurrent Extraction Column", Chem. Eng. Technol., Vol. 14 (1991), pp. 253-263.
  • A. Zimmermann, C. Gourdon, X. Joulia, A. Gorak, C. Casamatta, "Simulation of a Multicomponent Extraction Process by a Nonequilibrium Stage Model incorporating a Drop Population Model", ESCAPE I (1992).
  • M.Z. Lao, R. Taylor, "Modeling Mass-Transfer in 3-Phase Distillation", Ind. Eng. Chem. Res., Vol. 33 (1994), pp. 2637-2650.
  • E. Eckert, M. Kubicek, "Dynamic Simulation of a Distillation Column with Multiple Liquid Phases", Comp. Chem. Eng., Vol. 19 (1995).
  • W. Fei, X. Wen, R. Xie, "Application of non-equilibrium stage model to liquid-liquid extraction", Tsinghua Science and Technology, Vol. 1, No. 4 (1996), pp. 332-335.
  • W. Qin, Y. Dai, "Calculation method of non-equilibrium stage model for mass transfer parameters of multiple components in extraction column", Jisuanji Yu Yingyong Huaxue, Vol. 13, No. 2 (1996), pp. 81-85.
  • A. Kumar, S. Hartland, "Computational strategies for sizing liquid-liquid extractors", Ind. Eng. Chem. Res., Vol. 38 (1999), pp. 1040-1056.
  • M. Siegert, J. Stichlmair, J.-U. Repke, G. Wozny, "Dreiphasenrektifikation in Packungskolonnen", Chemi Ing. Technik, Vol. 71 (1999), pp. 819-823.
  • M. Siegert, J. Stichlmair, "Dreiphasenrektifikation in Packungskolonnen", Chemie Ing. Technik, Vol. 71 (1999), pp. 943-944.
  • J.-U. Repke, G. Wozny, "A Nonequilibrium Model for Three-Phase Distillation in a Packed Column" (2000).
  • F. Steyer, Z. Qi, K. Sundmacher, "Synthesis of Cyclohaxanol by Three-Phase Reactive Distillation: Influence of Kinetics on Phase Equilibria", Chem. Eng. Sci. (2002).
  • J.-U. Repke, O. Villian, G. Wozny, A Nonequilibrium Model for Three-Phase Distillation in a Packed Column: Modelling and Experiments, ESCAPE 13, June (2003), pp. 881-886.

Physical Properties:

  • H.A. Kooijman, R. Taylor, "Estimation of Diffusion Coefficients in Multicomponent Liquid Systems", Ind. Eng. Chem. Res., Vol. 30, No. 6 (1991), pp. 1217-1222.
  • R. Taylor, H.A. Kooijman, "Composition Derivatives of Activity Coefficient Models (For the estimation of Thermodynamic Factors in Diffusion)", Chem. Eng. Comm., Vol. 102, pp. 87-106.
  • H.A. Kooijman, "A Modification of the Stokes-Einstein Equation for Diffusivities in Dilute Binary Mixtures", Ind. Eng. Chem. Res., Vol. 41 (2002), pp. 3326-3328.
  • R. Taylor, H.A. Kooijman, A. Klamt, F. Eckert, Distillation simulation with COSMO-RS, Distilation Absorption, Baden-Baden, Germany, September-October (2002).

Other and Related:

  • Other Books:
    • R.E. Treybal, Mass-Transfer Operations, McGraw-Hill, New York (1980).
    • B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, McGraw-Hill, New York (2001).
    • M.F. Doherty, M.F. Malone, "Conceptual Design of Distillation Systems" (2001).
    • J. Benitez, Principles and Modern Applications of Mass Transfer Operations, John Wiley, New York (2002).
  • Reactive Distillation:
    • S. Hauan, Reactive Distillation Literature (1999).
    • M.M. Akbarnejad, A.A. Safekordi, S. Zarrinpashne, "A Study on the Capacity of Reactive Distillation Bale Packings: Experimental Measurements, Evaluation of the Existing Models, and Preparation of a New Model", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 3051-3058.
    • B.H. Bisowarno, M.O. Tade, "Dynamic Simulation of Startup in Ethyl Tert-Butyl Ether Reactive Distillation with Input Multiplicity", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 1950-1954.
    • W.-Z. Qian, Z.-W. Wang, F. Wei, D.-F. Li, J.-R. Zhang, "Hooke-Jeeves method for producing isopropylbenzene by catalytic distillation", Shiyou Huagong, Vol. 29, No. 4 (2000), pp. 279-282.
    • C. Hoyme, J.J. Siirola, P.R. Bienkowski, A Study of Methyl Acetate Hydrolysis Via Reactive Distillation at Elevated Temperature and Pressure, AIChE, November (2001).
    • P. Seferlis, J. Grievink, "Optimal Design and Sensitivity Analysis of Reactive Distillation Units Using Collocation Methods", Ind. Eng. Chem. Res., Vol. 40 (2001), pp. 1673-1685.
    • Y. Zheng, F.T.T. Ng, G.L. Rempel, "Catalytic Distillation: A Three-Phase Nonequilibrium Model for the Simulation of the Aldol Condensation of Acetone", Ind. Eng. Chem. Res., Vol. 40 (2001), pp. 5342-5349.
    • K.S. Fisher, G.T. Rochelle, "Effect of Mixing on Efficiencies for Reactive Tray Contactors", AIChE J., Vol. 48, No. 11, November (2002), pp. 2537-2544.
    • M.C. Georgiadis, M. Schenk, E.N. Pistikopoulous, R. Gani, "The Interactions of Design, Control, and Operability in Reactive Distillation Systems", Comp. Chem. Engng., Vol. 26 (2002), pp. 735-746.
    • R. Krishna, "Reactive Separations: More Ways to Skin a Cat", Chem. Eng. Sci. (2002).
  • Bubble Columns/Reactors:
    • E.P. Van Elk, P.C. Borman, J.A.M. Kuipers, G.F. Versteeg, "Modelling of Gas-Liquid Reactors - Implementation of the Penetration Model in Dynamic Modelling of Gas-Liquid Processes with the Presence of a Liquid Bulk", Chem. Eng. J., Vol. 76 (2000), pp. 223-237.
    • J.M. Van Baten, R. Krishna, "CFD Simulations of a Bubble Column Operating in the Homogeneous and Heterogeneous Flow Regimes", Chem. Eng. Technol., Vol. 25 (2002), pp. 1081-1086.
  • Liquid-Liquid extraction:
    • O. Becker, "Axiale Vermischung und Massstabvergroesserung Bei Statischen Kolonnen Fuer Die Etraktion Von Fluessigkeiten", Chemie Ing. Technik, Vol. 74 (2002), pp. 59-66.
  • Packed Columns:
    • R.J. Kouri, J. Sohlo, "Liquid and Gas Flow Patterns in Random Packings", Chem. Eng. J., Vol. 61 (1996), pp. 95-105.
    • Z. Olujic, "Development of a Complete Simulation Model for Predicting the Haudraulic Separation PErformance of Distillation Columns Equipped with Structured Packings", Chem. Biochem. Eng. Q., Vol. 11, No. 1 (1997), pp. 31-46.
    • K. Nandakumar, Y. Shu, K.T. Chuang, "Predicting Geometrical Properties of Random Packed Beds from Computer Simulation", AIChE J., Vol. 45, No. 11 (1999), pp. 2286-2297.
    • M. Siegert, J. Stichlmair, J-U. Repke, G. Wozny, "Heterogeneous Azeotropic Distillation in Packed Columns: Experimental Results", Chem. Eng. Technol., Vol. 23, No. 12 (2000), pp. 1047-1050.
    • M. Attarakih, D.A. Fara, S. Sayed, "Dynamic Modeling of a Packed-Bed Glycerol-Water Distillation Column", Ind. Eng. Chem. Res., Vol. 40 (2001), pp. 4857-4865.
    • M. Duss, H. Meierhofer, D.E. Nutter, "Effective Interfacial Area and Liquid Holdup of Nutter Rings at High Liquid Loads", Chem. Eng. Technol., Vol. 24, No. 7 (2001), pp. 716-723.
    • A.B. Erasmus, I. Nieuwoudt, "Mass Transfer in Structured Packing: A Wetted-Wall Study", Ind. Eng. Chem. Res., Vol. 40 (2001), pp. 2310-2321.
    • I. Iliuta, F. Larachi, "Mechanistic Model for Structured-Packing-Containing Columns: Irrigated Pressure Drop, Liquid Holdup, and Packing Fractional Wetted Area", Ind. Eng. Chem. Res., Vol. 40 (2001), pp. 5140-5146.
    • V. Linek, T. Moucha, F.J. Rejl, "Hydraulic and Mass Transfer Characteristics of Packings for Absorption and Distillation Columns. Rauschert-Metall-Sattel-Rings", Trans. I. Chem. E., Vol. 79, No. A, October (2001), pp. 725-732.
    • Z. Olujic, A. Seibert, B. Kaibel, H. Jansen, T. Rietfort, E. Zich, Performance of New Generation of Montz High Capacity Structured Packings, AIChE Spring meeting, April 22-26 (2001).
    • A. Pelkonen, A. Gorak, A. Ohligschlaeger, R. Kaesemann, "Experimental Study on Multicomponent Distillation in Packed Columns", Chem. Eng. Process., Vol. 40 (2001), pp. 235-243.
    • S. Piche, B.P.A. Grandjean, F. Larachi, "Reconciliation Procedure for Gas-Liquid Interfacial Area and Mass-Transfer Coefficient in Randomly Packed Towers", Ind. Eng. Chem. Res., Vol. 41 (2002), pp. 4911-4920.
    • R. Darakchiev, C. Dodev, "Gas Flow Distribution in Packed Columns", Chem. Eng. Process., Vol. 41 (2002), pp. 385-393.
    • Z. Olujic, Delft Model - A Comprehensive Design Tool for Currugated Sheet Structured Packings, AIChE Spring meeting, March 10-14 (2002).
    • F.H. Yin, A. Afacan, K. Nandakumar, K.T. Chuang, "CFD Simulation and Experimental Study of Liquid Dispersion in Randomly Packed Metal Pall Rings", Trans. I. Chem. E., Vol. 80, No. A, March (2002), pp. 135-144.
    • Z. Olujic, A.F. Seibert, B. Kaibel, H. Jansen, T. Rietfort, E. Zich, "Performance Characteristics of a New High Capacity Structured Packing", Chem. Eng. Proc., Vol. 42 (2003), pp. 55-60.
  • Maldistribution of Packed Columns:
    • J.G. Kunesh, L.L. Lahm, T. Yanagi, "Controlled Maldistribution Studies on Random Packing at a Commercial Scale", I. Chem. E. Symp. Ser., No. 104 (1987), pp. A233-244.
    • M. Song, F.H. Yin, K. Nandakumar, K.T. Chuang, "A Three-Dimensional Model for Simulating the Maldistribution of Liquid Flows in Random Packed Beds", Can. J. Chem. Eng., Vol. 76, April (1998), pp. 161-166.
    • C.W. Fitz, Jr, D.W. King, J.G. Kunesh, "Controlled Maldistribution Studies on Structured Packing", Trans. I. Chem. E., Vol. 77, No. A (1999), pp. 482-486.
    • M. Schultes, "Influence of Liquid Maldistribution on the Mass-Transfer Efficiency of Packed Columns", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 1381-1389.
    • G.S. Sun, F.H. Yin, A. Afacan, K. Nandakumar, K.T. Chuang, "Modelling and Simulation of Flow Maldistribution in Random Packed Columns with Gas-Liquid Countercurrent Flow", Trans. I. Chem. E., Vol. 78, No. A, April (2000), pp. 378-388.
    • F. Yin, Z. Wang, A. Afacan, K. Nandakumar, K.T. Chuang, "Experimental Studies of Liquid Flow Maldistributions in Random Packed Columns", not published? (2000).
  • Column Operation:
    • I.A. Furzer, "Froth Heights on Dual-Flow Trays with Heterogenous Binary Azeotropic System and a Heterogeneous Ternary System with a Homogeneous Azeotrope", Ind. Eng. Chem. Res., Vol. 40 (2001), pp. 4951-4966.
  • CFD:
    • J.M. Van Baten, R. Krishna, "Modelling Sieve Tray Hydraulics Using Computational Fluid Dynamics", Chem. Eng. J., Vol. 77 (2000), pp. 143-151.
    • Q.-L. Liu, J.-J. Xia, Y.-T. Wu, K-J. Bian, Z.-B. Zhang, "Several important aspects of catalytic reactive distillation. (II). Process design and mathematical simulation", Nanjing Daxue Xuebao, Ziran Kexue, Vol. 36, No. 1 (2000), pp. 104-110.
  • Tray Efficiencies:
    • W.K. Lewis, K.C. Chang, "Distillation. III. The mechanism of rectification", Trans. AIChE, Vol. 21 (1928), pp. 127-138.
    • H. Hausen, "The Definition of the Degree of Exchange on Rectifying Plates for Binary and Ternary Mixtures", Chemie Ingr. Tech., Vol. 25 (1953), pp. 595-597.
    • G. Standart, "Distillation. V. Generalized definition of theoretical plate or stage of contacting equipment", Chem. Eng. Sci., Vol. 20 (1965), pp. 611-622.
    • F. Kastenek, G.L. Standart, "Distillation Tray Efficiency", Academia, Prague (1966).
    • J. Aittamaa, "Estimating Multicomponent Plate Efficiencies in Distillation", Kemia-Kemi, Vol. 8 (1981), pp. 295-300, 317.
    • M.M. Dribika, M.W. Biddulph, "Scaling-Up Distillation Efficiencies", AIChE J., Vol. 32, No. 11, November (1986), pp. 1864-1875.
    • M.A. Kalbassi, M.M. Dribika, M.W. Bidduplh, S. Kler, J.T. Lavin, "Sieve Tray Efficiencies in the Absence of Stagnent Zones", I. Chem. E. Symp. Ser., No. 104 (1987), pp. A511-527.
    • J. Stichlmair, S. Ulbrich, "Liquid Channeling on Trays and the Effect on Plate Efficiency", I. Chem. E. Symp. Ser., No. 104 (1987), pp. A555-567.
    • L. Klemas, J.A. Bonilla, "Accurately Assess Packed-Column Efficiency", Chem. Eng. Prog., July (1995), pp. 27-44.
    • K. Klemola, J. Ilme, "Distillation Efficiencies of an Industrial-Scale i-Butane/n-Butane Fractionator", Ind. Eng. Chem. Res., Vol. 35, No. 12 (1996), pp. 4579-4586.
    • K. Klemola, J.K. Ilme, "Effect of Two-Pass Trays on Distillation Efficiencies", Chem. Eng. Techn., Vol. 20, No. 7, pages (1997).
    • K. Klemola, "Tray Efficiency Prediction of an Industrial Distillation Column", Acta Polytechnica Scandinavica - Chemical Technology Series (1997), pp. 1-95.
    • F. Wijn, "Does the Point Efficiency on Sieve Trays Depend on Liquid Height and Flow Regime?", I. Chem. E. Symp. Ser., No. 142 (1997), pp. 809-816.
    • N.S. Yang, Z.P. Xu, K.T. Chuang, "Determine the Number of Theoretical Plates with Commercial Simulators", Hydroc. Process., August (1999), pp. 109-116.
    • N.S. Yang, K.T. Chuang, M. Resetarits, "A New Criterion for Modelling Distillation Column Data Using Commercial Simulators", Ind. Eng. Chem. Res., Vol. 39 (2000), pp. 3308-3313.
    • D.P. Rao, C.V. Goutami, S. Jain, "A Direct Method for Incorporation of Tray-Efficiency Matrix in Simulation of Multicomponent Separation Processes", Comp. Chem. Eng., Vol. 25 (2001), pp. 1141-1152.
  • Trays:
    • F.J. Zuiderweg, "Sieve Trays - A View of the State of the Art", Chem. Eng. Sci., Vol. 37 (1982), pp. 1441-1464.
    • M.J. Lockett, "Distillation tray fundamentals" (1986).
    • H. Yoshida, "Liquid Flow over Distillation Column Plates", Chem. Eng. Comm., Vol. 51 (1987), pp. 261-275.
    • H.Z. Kister, Distillation Design, McGraw-Hill, New York (1992).
    • 3) E.F. Wijn, "The effect of downcomer layout pattern on tray efficiency", Chem. Eng. J., Vol. 63 (1996), pp. 167-180.
    • H. Mustafa, E. Bekassy-Molnar, "Hydrodynamic Characteristics of Nutter Valve Trays, New Correlations", Trans. I. Chem. E., Vol. 75, No. A (1997), pp. 620-624.
    • D.E. Nutter, "The MVG Tray at FRI", Trans. I. Chem. E., Vol. 77, No. A (1999), pp. 493-497.
    • S.J. Proctor, M.W. Biddulph, K.R. Krishnamurthy, "Effect of Liquid Channeling on a 1.8-M Distillation Sieve Tray", Ind. Eng. Chem. Res., Vol. 37 (1998), pp. 2535-2540.
  • Extraction:
    • J.S. Ghalehchian, M.J. Slater, "A Possible Approach to Improving Rotating Disc Contactor Design Accounting for Drop Breakage and Mass Transfer with Contamination", Chem. Eng. J., Vol. 75 (1999), pp. 131-144.
    • M. Haeberl, E. Blass, "Multicomponent Effects in Liquid-Liquid Extraction", Trans. I. Chem. E., Vol. 77, No. A, October (1999), pp. 647-655.
  • Mass transfer modeling:
    • R. Krishna, "A Unified Theory of Separation Processes Based on Irreversible Thermodynamics", Chem. Eng. Commun., Vol. 59 (1987), pp. 33-64.
  • Nonequilibrium modeling:
    • V.P. Maikov, A.I. Balunov, N.M. Karavaev, "Analysis of multicomponent distillation with nonequilibrium stages of separation", Dokl. Akad. Nauk SSSR, Vol. 246, No. 3 (1979), pp. 674-8 [Chem. Tech.].
    • H. Sardar, Development of a nonequilibrium stage model for the design and simulation of gas processing units and verification with plant data, PhD. Thesis (1985).
    • G. Ovejero, R. van Grieken, L Rodriguez, J.L. Valverde, "Simulation of multicomponent distillation using a nonequilibrium stage model", Sep. Sci. Technol., Vol. 29, No. 14 (1994), pp. 1805-21.
    • J. Brachmann, A. Dumitru, J.A. Maruhn, H. Stoecker, W. Greiner, D.H. Rischke, "Non-equilibrium fluid-dynamics in the early stage of ultrarelativistic heavy-ion collisions", Nuclear Physics A, Vol. A619, No. 3,4 (1997), pp. 391-412.
    • S.C. Oh, Y.S. Oh, Y.-K. Yeo, "Simulation and Optimization of the Waste Nitric Acid Recovery Process", Industrial & Engineering Chemistry Research, Vol. 37, No. 2 (1998), pp. 697-703.
    • L.N. Sridhar, C. Maldonado, A. Garcia, A. De Frias, "Analysis of single-stage nonequilibrium separation process problems", AIChE Journal, Vol. 46, No. 11 (2000), pp. 2237-2244.
    • L.G. Torres, F.J.D. Martins, I.D.L. Bogle, "Comparison of a reduced order model for packed separation processes and a rigorous nonequilibrium stage model", Brazilian Journal of Chemical Engineering, Vol. 17, No. 4-7 (2000), pp. 915-923.
    • H.-G. Wei, W.-Y. Fei, "Nonequilibrium stage model and its application in chemical engineering separation", Shiyou Huagong, Vol. 30, No. 6 (2001), pp. 486-490.
  • Unsorted:
    • M. Mangold, A. Kienle, E.D. Gilles, K.D. Mohl, "Nonlinear Computation in DIVA - Methods and Applications", Chem. Eng. Sci., Vol. 55 (2000), pp. 441-454.
    • P. Rajniak, R. Protus, P. Patek, "Design of industrial fractionating columns", Ropa Uhlie, Vol. 33, No. 1-2 (1991), pp. 27-30.
    • X. Xu, Y. Zheng, J. Li, W. Dong, "Process simulation for synthesis of cellosolve with catalytic distillation", Huagong Xuebao (Chin. Ed.), Vol. 44, No. 3 (1993), pp. 269-76.
    • A.B.S.H. Salem, M.S. Al-Fandery, and A.A.H.M. Al Latif, "Modeling of a Packed Column Contactor", Ind. Eng. Chem. Res., Vol. 34, No. 6 (1995), pp. 2084-93.

Alphabetic/Chronologic lists

Using Reference Lists

This page was automatically generated from a source file using the following BiBTex file which contains our references. For this we used various small Perl scripts: bib2xml converts a bib file to XML, xml2bib does the reverse, and finally bibref converts the source file to this HTML page. We typed the following commands: "call bib2xml.bat < all.bib> all.xml" and "call bibref.bat all.xml < neq-pubs.src> neq-pubs.htm". Calling bibref also creates various useful files: matched, shows the found references and the number of occurances, missing, shows those references that could not be found, read_ids, shows all references read from the bib (xml) files together with their source, and read.xml, is a compilation of all references read from the bib (xml) files.

Perl is a modern, flexible, multi-purpose scripting language anybody can learn. We use it to automate many repetitive tasks, like compiling this page of references. Though Perl scripts can be horribly cryptic, this should not hold you back from using them: You can just run them without knowing what's inside, like you'd do with any old fashioned executable! The only thing you need to know is how to use the commandline, and that is nothing to be afraid of! For any information on Perl http://www.perl.com is the best place to start looking. Perl is installed by default on many a mature operating system, for example Linux. Unfortunately, MS windows requires you to install it yourself. We use ActiveState's Perl for windows (once installed, run the scripts from the commandline by starting a "DOS" box by going to "Start"-"Run" and typing "Cmd" or "Command" on Win95). Useful Perl links can be found at the end of the Perl Timeline page and on http://www.perl.org.

Copyright © Tue Nov 27 14:57:30 2018 ChemSep