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Abstract

Simulation of distillation columns usually is carried out using an equilibrium model based on the as-
sumption that thermodynamic and thermal equilibrium exists on each tray in the column. To deal with
departures from thermodynamic equilibrium it is common practice to specify an efficiency that is the
same for all components on all stages. However, component efficiencies are not equal in systems with
more than two components and cannot be correlated, especially for nonideal systems. This makes the
equilibrium model inappropriate for dynamic simulations where these efficiencies are subject to change
and cannot be specified beforehand. Using constant efficiencies neglects the influence of the tray hydro-
dynamics on the mass transfer and the consequences for the column dynamics. Additionally, in certain
column operations there is a departure from thermal equilibrium which cannot be modeled with the
equilibrium model either.

In this thesis a nonequilibrium model for the dynamic simulation of distillation columns is described.
The nonequilibrium model incorporates the rigorous calculation of the mass and energy transfer rates
and avoids the use of efficiencies. The influence of mass transfer correlations on column dynamics
has been investigated. A new design mode is implemented that eliminates the need for a previously
known column layout in order to do a nonequilibrium (dynamic) simulation, which enlarges the range
of application of the model. Alternative plug-flow models are proposed to improve the modeling of
mass transfer on large trays.
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Chapter 1

Introduction and Motivation

To improve the economics, flexibility, operability, and safety of column-based separation processes,
design that considers steady-state as well as dynamic behavior is desired. This requires a fundamentally
sound model that is capable of accurately describing the separation process. A nonequilibrium model
can provide accurate predictions of column performance without the need to fit experimental column
data. Our objective is to construct an improved nonequilibrium model which allows both steady-state
and dynamic behavior of columns to be studied.

1.1 Need for Dynamic Process Modeling

Current industry design practices feature separate process design and process control groups. Process
design remains a largely sequential process with each process unit being sized individually with the
emphasis on minimizing capital expenditures instead of an emphasis on overall performance. The re-
sulting dynamic system of the connected equipment can be ill-behaved or difficult to control. Especially
designs that minimize holdups may lead to severe control problems. Control engineers often are in-
volved only after the design is already complete. This may lead to redesign of the control system or
equipment, unnecessarily complicated control systems, and revenue lost due to delays or not meeting
promised product deliveries.

In the process design phase, dynamic simulation is needed to determine dynamic responses to process
disturbances such as surge tank levels, column sump levels, product flow rates, or product compositions
required for sizing of the relevant equipment as well as for the selection and location of control sen-
sors and actuators. Dynamic modeling can also identify whether the product goals are attainable and
detect control schemes which are not adequate or appropriate for meeting given product specification
goals. This is specifically of interest with the installation of advanced control algorithms. Initial tuning

1



2 Chapter 1: Introduction and Motivation

and optimization of control parameters can result in faster process start-up and control problems will
be detected earlier when the process design can be altered without a considerable increase in costs.
Controllability of alternative flowsheets can be investigated and auxiliary equipment for startup or shut-
down can be located and designed. A side benefit from dynamic simulation is that process engineers
will become familiar with the process dynamics and control issues (and control engineers with process
design).

For process safety assessments, dynamic simulation can be used to check whether environmental con-
straints will be met during transitions or to test various emergency shut down procedures without per-
forming actual experiments. Start-up and shutdown of current processes can be optimized and while
interfacing with the control structure dynamic simulation can facilitate online process optimization and
operator training. It can also be a tool for testing the controls robustness, e.g., in relation to measurement
errors or valve malfunctioning.

Clearly, dynamic simulation provides process and control engineers with a powerful tool to improve
process design and production in various ways which can lead to improved revenues. However, dynamic
process simulation is only yet starting to become of importance due to the fact that dynamic simulation
programs and packages have suffered from a number of deficiencies. Most engineers could not use them
because they were geared for use by specialists, they were not user-friendly nor interactive. Usually,
even the more simple models required large computer resources. Simulators were not portable, fast,
flexible, extendable, maintainable, or affordable.

The immense increase in available computer power now allows the engineer to do dynamic simula-
tions on a personal computer or workstation (instead of having to use a mainframe or supercomputer).
Maintainability and extendibility is possible by use of equation oriented simulators where models are
described in high level declarative languages. Examples are SPEEDUP (Perkins and Sargent, 1982,
Pantelides, 1988a), ASCEND (Piela et al., 1991) and gPROMS (Barton and Pantelides, 1991). Pan-
telides and Barton (1993) and Wozny and Jeromin (1994) discuss the current status and possible future
of (equation oriented) dynamic simulation.

1.2 Dynamic Column Simulation

The simulation of separation processes – in particular the simulation of distillation columns – is an
essential part of dynamic process simulators. Distillation is a high energy consumer in most chemi-
cal processes and the interactions between columns can be significant from the design as well as the
operability point of view.

Simulation of separation processes by equilibrium stage calculations dates back to 1893 when Sorel
published equations for simple, continuous, steady-state distillation. These equations included to-
tal and component material balances and a corresponding energy balance that could account for heat
losses. Sorel’s equations were not widely applied until 1921 when they were used in a graphical solu-
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tion technique for binary systems by Ponchon (1921) and Savarit (1922), who employed an enthalpy-
concentration diagram. In 1925 a much simpler, but restricted, graphical technique was developed by
McCabe and Thiele. The simplification was achieved by assuming constant molar overflow, eliminating
the energy balance equations. Lewis and Matheson (1932) and Thiele and Geddes (1933) were the first
to propose methods to solve the systems of equations in a tray by tray manner. Thiele and Geddes (1933)
were also the first to solve each type of the MESH equations in turn (MESH is the acronym referring to
the different types of equations: M=Material balance, E=Equilibrium, S=Summation, H=Heat balance).

After the introduction of the digital computer in the 1950’s, the rate of development of algorithms
and simulators has increased dramatically. Equilibrium stage calculations enabled engineers to design
a column for the separation of simple mixtures without the need to build a pilot plant again and to
scaleup. This had a big impact on the investment costs and design time for a new (part of a) plant.
Several textbooks describe the development of the equilibrium stage simulation (see King, 1980; Henley
and Seader, 1981; Holland, 1981). Seader (1985) has discussed some recent advances in numerical
methods for application to mathematical modeling in process design. By the late 1970’s, the steady-
state equilibrium stage simulators had made substantial strides, particularly in the area of the physical
property prediction. By the end of the 1970’s some commercial simulators had gained a wide acceptance
by chemical engineers working in process design.

Chemical engineers first used dynamic simulation to evaluate control and safety system designs in the
mid 1950’s. Only the simplest models could be used, even if just a single unit was to be simulated, since
computers were, at that time, far too slow. For the dynamic simulation time derivatives of the holdups
on the stages are required making the equations to solve differential ones. A model described by as
many as fifty differential equations was then a large model. Early computer models and experiments
that appeared in the literature were reported by Mah et al. (1962), Huckaba and coworkers (1963,
1965), Luyben et al. (1964), Waggoner and Holland (1965), Distefano (1968), and Howard (1970).
Howard (1970) discussed a continuous distillation simulator and compared results with experiments.
Constant molar holdups were assumed, derivative terms in the energy equation were eliminated and a
Runge-Kutta method was used for integration. Boston and Britt (1981) developed a commercial batch
distillation simulator, based mainly on the model of Distefano. Gallun and Holland (1982) used Gear’s
method (1971a,b) to solve the equations involved in dynamic simulation. Holland and Liapis (1983)
discuss the use of semi-implicit Runge-Kutta methods as well as the multi-step methods of Gear for the
integration. Prokopakis and Seider (1983) simulated azeotropic distillation towers.

Gani et al. (1986, 1987a,b, 1989), Cameron (1988), and Ruiz (1988) proposed an extended model for
the continuous dynamic simulation of distillation columns. They also discussed the optimization of the
dynamic startup/shutdown operations (Gani et al., 1987a,b) and the hydraulics involved. Their model
is, perhaps, the most comprehensive dynamic equilibrium stage model described in the literature. They
neglected vapor holdup (which is much smaller than the liquid holdup) and assumed the equilibrium
model for each stage in the column, using the Murphree plate efficiency. The equations are solved
with an ODE solver which solves the algebraic equations through a procedural approach. Gani et al.
(1987a,b) discuss startup/shutdown operations and the hydraulics involved which they reported to play a
major role in these kinds of simulations. Cuille et al. (1986) simulated batch distillation with chemical
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reactions present. Holl et al. (1988) made a dynamic simulator called DIVA and Pantelides (1988)
included dynamic simulation in SPEEDUP. Gani and Cameron (1989) proposed a general simulator
for steady-state as well as dynamic simulation. The dynamic model could even help with steady-state
calculations that are very hard to converge.

Several authors discuss the assumptions used in the dynamic simulation of separation columns that
introduce errors. Ranzi et al. (1988) discussed the effects of the energy balances and the way they affect
the simulation. They found that the energy balances must be evaluated completely in order to predict
correct behavior. Choe and Luyben (1987) conclude that vapor holdups cannot be neglected (especially
for columns operating at high pressures) and that column pressures should be calculated (especially for
low pressure columns, where the tray pressure has a large influence on the tray temperature).

1.3 Nonequilibrium column models

Although the equilibrium model has been the basis of the dynamic simulation of distillation columns,
its shortcomings are well known. The model is based on the assumption that both phases leaving a stage
are in thermal and thermodynamic equilibrium. In practice equilibrium is rarely attained since mass
and heat transfer are actually rate processes that are driven by the gradients in chemical potential and
temperature.

The traditional method of coping with finite rates of mass transfer in stagewise processes has been
through the concept of a stage efficiency. There are various definitions of stage efficiencies, but the most
popular is the Murphree (1925) component vapor efficiency:

� �

�� � 
�����

��� � 
�����

(1.1)

where 
�� is the actual vapor composition of component � leaving stage �, 
 ����� the vapor composition
entering from the previous stage ���, and 
 ��� the vapor composition that is in equilibrium with the liquid
leaving stage �. This stage efficiency reflects the ratio of actual mass transfer over the mass transfer that
would be accomplished by an equilibrium stage. For lack of other information, the stage efficiency is
taken to be the same for all components, obtained from some empirical correlation depending on the
components in the mixture.

For a binary system both component efficiencies are equal, but unfortunately this is not the case in sys-
tems with more than two components. Diffusional interaction phenomena (for example reverse diffusion
or osmotic diffusion, have proven that mass transfer can occur against a gradient or in absence of a gradi-
ent (Toor, 1964). If a component diffuses against its gradient the component efficiency will be negative
(since the direction of mass transfer is the opposite of that what the equilibrium model would predict),
and, if it diffuses without a gradient, the components efficiency will be infinite (since the equilibrium
model predicts no mass transfer). Because diffusional interactions influence the fluxes differently for
each component, component efficiencies in mixtures with three or more components do not have to be
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equal. In fact they can vary over a range from�� to ��. This surprising result has been confirmed by
experiment (Krishna et al., 1977). For ideal and moderately ideal systems the component efficiencies
are only a weak function of the composition, in contrast to nonideal systems where the opposite is true.
Consequently, in the distillation of nonideal systems the concentration transients could cause large com-
ponent efficiency changes that might significantly alter the simulation. Therefore, any good model must
be based on diffusion calculations that include diffusional interactions. However, dynamic simulators
based on the equilibrium model use Murphree efficiencies which are assumed constant and equal for all
components.

Efficiencies also depend on the type of operation, as they differ in distillation and absorption operations
for the same mixture at hand. Plate hydraulics (including weeping and entrainment) influence the flows
on a tray. Different vapor and liquid flows result into various flow regimes of the two phases on the tray
(such as spray, emulsion, or bubble flow) which each have there own transfer properties (and thus, effi-
ciencies). Thus, transients in the tray hydraulics imply possible changes in the component efficiencies
but with a constant efficiency model such effects are totally neglected.

Another assumption of the equilibrium model, thermal equilibrium, forces the liquid and vapor leaving
a stage to have the same temperature. In reality, heat transfer between the two phases is limited and the
separate phases have their own temperatures. The assumption of thermal equilibrium makes it difficult to
model the dynamics of sections in a column that are purposely used for heat transfer, or columns where
feeds are normally subcooled or superheated (such as extractive distillation or strippers/absorbers).

To eliminate the problems discussed above we need to construct a new dynamic column model which
does not employ overall thermodynamic and thermal equilibrium assumptions! A nonequilibrium model
was developed by Krishnamurthy and Taylor (1985a-d, 1986) (see, also, Sivasubramanian et al., 1987;
Powers et al., 1988; Lao et al., 1989, 1994; Taylor and Krishna, 1993) for steady-state simulation
of separation processes. The nonequilibrium model splits the stage material and energy balances into
balances for each phase, adding rate equations for the calculation of mass and energy interphase transfer
rates. The mass transfer rates are computed through matrix routines directly from fundamental diffusion
equations and mass transfer correlations. A second generation model was developed by Taylor et al.
(1994) which incorporated the pressure as a variable. Taylor et al. (1992) have demonstrated application
of the nonequilibrium model to industrial column operations. Since the nonequilibrium model avoids
the use of tray efficiencies and includes the column hydraulics (which are very important in dynamic
column simulation) it is suitable as a basis for developing a better dynamic column model.

As very few unsteady-state column data is available, dynamic simulations of columns or linked columns
provide an ideal opportunity to study and analyze the dynamic behavior when no other model is avail-
able. However, it also makes it difficult to validate the results of a dynamic simulator other than by
checking general trends.
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1.4 Objectives

The purpose of this work has been to construct and implement dynamic equilibrium and nonequilibrium
models into a dynamic column simulator. Requirements of the simulator were

� Portable implementation (Fortran)

� Easily switch between Steady-State (SS) mode and Dynamic State (DS) mode

� Contain an extensive collection of models for handling the dynamics of many different kinds of
trays

� Contain a variety of models for multicomponent diffusion coefficients, mass transfer coefficients,
thermodynamic properties, and physical properties. Accurate models for these properties are
needed in order to use the nonequilibrium model.

� Numerically robust as well as efficient in terms of computer time and storage

� Easy to use (interactive)

� Flexible and extendible

� Graphical output

The simulator was to be used to investigate influences of different holdup models, tray layout param-
eters, mass transfer coefficient and diffusion models on open loop simulations. Optional were the in-
clusion of controllers (closed loop simulations) and the operation outside normal operation to study
startup and shutdown operations. Since dynamic experimental measurements are virtually absent, no
comparison with data is carried out.
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Chapter 2

Steady-State Simulation of
Nonequilibrium Columns

The steady-state nonequilibrium model and its equations are introduced. Extra specifications required
by the nonequilibrium model in comparison with the equilibrium model are identified. A new design
mode which enables the simultaneous design of the column layout and column simulation is explained.
This design mode enables the use of the nonequilibrium model in flowsheet design calculations

2.1 The Nonequilibrium Model

A second generation nonequilibrium model was developed by Taylor and coworkers and is described in
detail by Taylor et al. (1994). It can be used to simulate trayed columns as well as packed columns.
Packed columns are simulated with stages representing a discrete integration over the packed bed. The
more stages are used the better the integration, and the more accurate the results will be. A schematic
diagram of a nonequilibrium stage is shown in Figure 2.1. This stage may represent one (or more than
one) tray in a trayed column or a section of packing in a packed column. The vertical wavy line in the
middle of the diagram represents the interface between the two phases which may be vapor and liquid
(distillation), gas and liquid (absorption) or two liquids (extraction).

Figure 2.1 also serves to introduce the notation used in writing down the equations that model the
behavior of this nonequilibrium stage. The flow rates of vapor and liquid phases leaving the �-th stage
are denoted by �� and �� respectively. The mole fractions in these streams are 
 �� and ��� . The ���
are the molar fluxes of species � on stage �. When multiplied by the area available for interphase mass
transfer we obtain the rates of interphase mass transfer. The temperatures of the vapor and liquid phases
are not assumed to be equal and we must allow for heat transfer as well as mass transfer across the

11
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Figure 2.1: Schematic diagram of a nonequilibrium stage (Taylor and Krishna, 1993).

interface.

If Figure 2.1 represents a single tray then the term ��� is the fractional liquid entrainment defined as the
ratio of the moles of liquid entrained in the vapor phase in stage � to the moles of downflowing liquid
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from stage �. Similarly, ��� is the ratio of vapor entrained in the liquid leaving stage � (carried down
to the tray below under the downcomer) to the interstage vapor flow. For packed columns, this term
represents axial dispersion. Weeping in tray columns may be accounted for with a similar term. The
component (M)aterial balance equations for each phase may be written as follows:

��
�� � �� � ��� � ��� ���
�� � ����
����� � ���������
����� � ���� �

��
���

����� ����

� � � � �� �� � � � � � (2.1)

��
�� � �� � ��� � ��� ������ � ���������� � ��������������� � ���� �

��
���

����� ����

� � � � �� �� � � � � � (2.2)

where ���� is the interlinked flow rate for component � from stage � to stage �, � is the number of total
stages (trays or sections of packing), �� is the sidestreams flowratio, and ��� is the component feed rate.
The last terms in Equations (2.1) and (2.2) are the mass transfer rates (in ���	
�). At the V/L interface
we have continuity of mass and, thus, the mass transfer rates in both phases must be equal. Mass transfer
from the “V” phase to the “L” phase is defined as positive.

The total material balances for the two phases are obtained by summing Equations (2.1) and (2.2) over
the component index �.

��
�� � �� � ��� � ��� ��� � ���� � ��������� � � �� �

	�
���

��
���

����� ����

� � (2.3)

��
�� � �� � ��� � ��� ��� � ���� � ��������� � ��� �

	�
���

��
���

����� ����

� � (2.4)

�� denotes the total feed flow rate for stage �, �� �
�	
��� ��� .

Here total flow rates and mole fractions are used as independent variables and total as well as component
material balances are included in the set of independent model equations. In the nonequilibrium model
of Krishnamurthy and Taylor (1985) component flow rates were treated as variables.

The nonequilibrium model uses two sets of (R)ate equations for each stage:

���� � ��� ����� � � � � �� � � � � � �� � (2.5)

���� � ��� ����� � � � � �� � � � � � �� � (2.6)

where ��� is the mass transfer rate of component � on stage �. The mass transfer rate in each phase is
computed from a diffusive and a convective contribution with

���� � ���� �


� � 
����� (2.7)

���� � �����


� � ������ (2.8)
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where �
� is the total interfacial area for stage � and ��� is the total rate on stage � (��� �
�	
������).

The diffusion fluxes � are given by (in matrix form):

��� � � ��� ��
� 	�
� � 

� (2.9)

���� � ��� ��
�	��
 � ��� (2.10)

where �
� � 

� and ��
 � ��� are the average mole fraction differences between the bulk and the
interface mole fractions (Note that the fluxes are multiplied by the interfacial area to obtain mass transfer
rates). How the average mole fraction differences are calculated depends on the selected flow model
(see Chapter 3). The matrices of mass transfer coefficients, ��	, are calculated from

��� 	 � ��� 	���
� 	 (2.11)

where �
� 	 is a matrix of thermodynamic factors for phase � . For systems where an activity coefficient
model is used for the phase equilibrium properties the thermodynamic factor matrix 
 (order � � �) is
defined by


�� � Æ�� � ��

�
� ��  �
���

�
����
��� ��������	��

(2.12)

If an equation of state is used  � is replaced by ��. Expressions for the composition derivatives of ��  �
are given by Taylor and Kooijman (1991). The rate matrix ��	 (order�� �) is a matrix of mass transfer
resistances calculated from the following formulae:

���� �
!�
���	

�

	�
����� ���

!�
����

(2.13)

���� � �!�
�

�

����
� �

���	

�
(2.14)

where ���� are binary pair mass transfer coefficients for phase � . Mass transfer coefficients, � �� , are
computed from empirical models (Taylor and Krishna, 1993) and multicomponent diffusion coefficients
evaluated from an interpolation formula (Kooijman and Taylor, 1991). Equations (2.13) and (2.14) are
suggested by the Maxwell-Stefan equations that describe mass transfer in multicomponent systems (see
Taylor and Krishna, 1993). The matrix of thermodynamic factors appears because the fundamental driv-
ing force for mass transfer is the chemical potential gradient and not the mole fraction or concentration
gradient. This matrix is calculated from an appropriate thermodynamic model.

The binary mass transfer coefficients are estimated from empirical correlations as functions of column
internal type as well as design, operational parameters, and physical properties including the binary pair
Maxwell-Stefan diffusion coefficients. Thus, the mass transfer coefficient models form the basis of the
nonequilibrium model and it is possible to change the behavior of a column by selecting a different
mass transfer coefficient correlation. Table 2.1 gives a summary of the correlations per type of column
internals which are currently supported by our steady-state nonequilibrium model, they are described in
detail by Taylor and Krishna (1993).

Note that there are � times � binary pair Maxwell-Stefan diffusion coefficients, but only � � � times
�� � elements in the ��� 	 and ��� 	 matrices and, therefore, only �� � rate equations per phase. This is
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Table 2.1: Available mass transfer coefficient correlations per internals type

Bubble-Cap Sieve Valve Dumped Structured
tray tray tray packing packing

AIChE AIChE AIChE Onda 68 Bravo 85
Hughmark Chan-Fair Bravo 82 Bravo 92

Zuiderweg Billet 92 Billet 92
Harris

the result of the fact that diffusion calculations only yield relative transfer rates. We will need an extra
equation that will ”bootstrap” the mass transfer rates: the energy balance for the interface. Note also
that, in this model, the flux correction on the mass transfer coefficients has been neglected.

The (E)nergy balance equations on stage � are written for each phase as follows:

"�� � �� � ��� � ��� ���#
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where ��� is the interlink flow rate from stage � to stage �. The last term in the left-hand-side of
Equations (2.15) and (2.16), % � , represents the energy transfer rates for the vapor and liquid phase which
are defined by
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where 
#�� are the partial molar enthalpies of component � for stage �. We also have continuity of the
energy fluxes across the V/L interface which gives the interface energy balance:

"
� � %�� � %�� � � (2.19)

where &� and &� are the vapor and liquid heat transfer coefficients respectively, and ' � , ' 
 , and '�

the vapor, interface, and liquid temperatures. For the calculation of the vapor heat transfer coefficients
the Chilton-Colburn analogy between mass and heat transfer is used:

�� �
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��
(2.20)

&� � �+*���
��� (2.21)
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For the calculation of the liquid heat transfer coefficients a penetration model is used:

&� � �+*�
�
�� (2.22)

where � is the average mass transfer coefficient and ) the average diffusion coefficient.

In the nonequilibrium model of Krishnamurthy and Taylor (1985) the pressure was taken to be specified
on all stages, as is normally done in equilibrium model simulations. However, column pressure drop
is a function of tray (or packing) type as well as the column design and column operating conditions,
information that is required for or available during the solution of the nonequilibrium model equations.
It was, therefore, quite straightforward to add an hydraulic equation to the set of independent equations
for each stage and to make the pressure of each stage (tray or packed section) an unknown variable. The
stage is assumed to be at mechanical equilibrium so ,�� � ,�� � ,� .

In the second generation model, the pressure of the top tray (or top of the packing) is specified along
with the pressure of any condenser. The pressure of trays (or packed sections) below the topmost are
calculated from the pressure of the stage above and the pressure drop on that tray (or over that packed
section). If the column has a condenser (which is numbered as stage 1 here) the hydraulic equations are
expressed as follows:

�� � ,	 � ,� � � (2.23)

�� � ,���	 � ,� � � (2.24)

�� � ,� � ,��� � ��,���� � � � � �� �� � � � � � (2.25)

where ,	 is the specified condenser pressure, ,���	 is the specified pressure of the tray or section of
packing at the top of the column, and �, ��� is the pressure drop per tray or section of packing from
section/stage � � � to section/stage �. If the top stage is not a condenser, the (H)ydraulic equations are
expressed as

#� � ,���	 � ,� � � (2.26)

#� � ,� � ,��� � ��,���� � � � � �� �� � � � � � (2.27)

In general we may consider the pressure drop to be a function of the internal flows, the fluid densities,
and equipment layout parameters.

�,��� � ������� ����� +
�
���� +

�
���� ��
�-�� (2.28)

Tray pressure drop calculations consist of the addition of various contributions which can be estimated
with various correlations. Bubble cap tray pressure drop calculations were given by Bolles(1963), cor-
relations for sieve and valve trays are found in Lockett (1986) and Kister (1992). There are two types of
packed column pressure drop correlations; Generalized Pressure Drop Correlations (GPDC) and more
theoretically based correlations that compute the liquid holdup which make them superior in predicting
the pressure drop above the loading point (. �� % of flooding). Table 2.2 gives a summary of the
correlations for each type of column internal that are implemented in our steady-state nonequilibrium
model. Pressure drop can also be fixed to impose a known pressure profile.
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Table 2.2: Pressure drop correlations per internals type

Bubble-Cap Sieve Valve Dumped Structured
tray tray tray packing packing

Fixed Fixed Fixed Fixed Fixed
Bolles Lockett/ Lockett/ Ludwig 79 Billet 92

Kister Kister Leva 92 Bravo 86
Billet 92 Stichlmair 89

Stichlmair 89 Bravo 92

Phase (E)quilibrium is assumed to exist only at the interface with the mole fractions in both phases
related by:

$
�� � /���


�� � 

�� � � � � �� �� � � � � � (2.29)

where /�� is the equilibrium ratio for component � on stage �. The / �� are evaluated at the (calculated)
temperature, pressure, and mole fractions at the interface.

The mole fractions must (S)um to unity in each phase:

0�� �
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as well as at the interface:

0� 
� �
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Table 2.3 lists the type and number of equations for the nonequilibrium model. The model consist
of �� � � equations and variables, where � is the number of components. The equations are solved
simultaneously using Newton’s method.

Nonequilibrium and equilibrium models require many similar specifications. Feed flows and their ther-
mal condition must be specified for both models, as must the column configuration (number of stages,
feed and sidestream locations etc.). Additional specifications that are the same for both simulation mod-
els include the specification of, for example, reflux ratios or bottom product flow rates if the column
is equipped with a condenser and/or a reboiler. The specification of the pressure on each stage is nec-
essary if the pressure drop is not computed; if it is, only the top stage pressure needs be specified (the
pressure of all other stages being determined from the pressure drop equations that are part of the model
described above).
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Table 2.3: Nonequilibrium model equations type and number

Equation Number
Material balances ��� �

Energy balances �

transfer Rate equations ��� �

Summations equations �

Hydraulic equation �

interface eQuilibrium relations �

Total MERSHQ ��� �

If we solve the nonequilibrium model with Newton’s method, we also require initial guesses for all
the variables. This is done with an initial guess routine normally used for equilibrium stage simulation
which uses a bottoms flowrate and reflux ratio specification and solves the column using the ideal Wilson
K-value model. Temperatures of the vapor, interface, and liquid are then initialized as being equal to the
temperature from this guess. Mass and energy transfer rates are initialized as zero and the interface mole
fractions are set equal to the bulk mole fractions which are also provided by the initial guess. Pressure
drops are initially assumed to be zero.

A nonequilibrium simulation needs the following extra specifications (in comparison with an equilib-
rium model):

� The column internals type and the layout

� Mass transfer coefficient model

� Flow model for both phases

� Entrainment and weeping models

� Pressure drop model

� Physical properties models

For the estimation of transport properties the nonequilibrium model requires the evaluation of many
more physical properties (such as densities, viscosities, diffusivities, heat capacities, thermal conductiv-
ities, surface tension) which the equilibrium model does not need.

In addition, a nonequilibrium simulation cannot proceed without some knowledge of the column type
and the internals layout in order to determine mass transfer coefficients, interfacial area, and pressure
drop. Tray type and mechanical layout data, for example, is needed in order to calculate the mass
transfer coefficients for each tray. For packed columns the packing type, size and material must be
known. Column layout is specified per section of the column, where a section is represented by one or
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more trays (or packed bed). Standard tray or packing layout and data can be stored on-line in libraries
to be easily accessible.

For designers this restriction resulted in first simulating the column with an equilibrium model, rating
the column and only then using a nonequilibrium model. If the flows in the column changed - due to
different specifications or a change in the feeds - the column had to be recalculated with the equilibrium
model and re-rated. Therefore, the nonequilibrium model could not be used in the design of flowsheets,
where changes in the flows required a continuous re-rating of the column.

To alleviate the nonequilibrium model from this ”chicken and egg” problem, a design-mode was devel-
oped where the rating of the column occurs simultaneously with the simulation and the only required
specification is the selection of a specific internals type.

2.2 The Design Mode

For each type of internal a specific design mode routine needs to be written that will determine the
column layout given a set of flowrates and physical properties on the tray or in the section of pack-
ing. However, similarities in tray- and packing-design allow combination for similar types of internals.
Liquid-liquid extractors require completely different design methods, even if a similar internals layout
is used as in distillation (this is due to the smaller difference in the properties of the contacting phases).
Since the layout must be adapted for changes in both flowrates and properties the column layout is input
as well (this facilitates the user to make specifications that the design mode will not change as far is
possible).

The initial layout is determined after the flows are known from the initial guess. Each stage in the
column is designed separately and independently of adjacent stages. Then, after each iteration (that
is, an update of the flows) the same design routine is called for re-design. Since the flowrates are also
dependent on the layout (to a smaller degree than the layout is dependent on the flowrates) it is important
that the design routine is only executed if the flowrates have changed more than by a certain fraction
(which can be specified). After convergence has been attained, the internals design is rationalized,
making the design for each stage in a column section the same. Then the simulation is restarted with the
previously converged answer as starting point. The design method provides a complete design of any
trayed or packed section in the column. In this manner trayed and packed sections can be freely mixed
in a column simulation/design.

Different design methods can be employed:

� Fraction of flooding; this is the standard design method for trays, we have employed a modified
version of the method published by Barnicki and Davis (1989).

� Pressure drop; this is the usual design method for packed columns, but is very useful as well for
tray design with pressure drop constraints.
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Table 2.4: Tray layout data

General (sieve) tray layout data:
Column diameter Active area
Number of flow passes Total hole area
Tray spacing Downcomer area
Liquid flow path length Weir length
Hole diameter Weir height
Hole pitch Deck thickness
Downcomer clearance
Additional data for bubble caps:
Cap diameter Slot area
Slot height Riser area
Skirt clearance Annual area
Additional data for valves:
Closed Loss K Open Loss K
Eddy Loss C Ratio Valve Legs
Valve Density Valve Thickness
Fraction Heavy Valves Heavy Valve Thickness

The methods generate a column-design that might not be optimal from an engineers viewpoint. They
must be seen as starting points for the actual design layouts. Also, the design does not include construc-
tional calculations to determine tray support constructions or thicknesses of trays or the column. Design
mode is automatically triggered if the column diameter is not specified. Other layout parameters can
be specified but they may be changed by the design routine. Each of these methods behaves differently
and they are discussed in more detail below. An additional and very important de-rating factor is the
system factor (SF). It represents the uncertaincy in design correlations with regard to phenomena which
are currently still not properly modeled, such as foaming.

Tray layout parameters that specify a complete design (for the calculation of mass transfer coefficients
and pressure drops) are shown in Table 2.4. For packings only the column diameter and bed height are
design parameters, other parameters are fixed with the selection of the type of packing (such as void
fraction, nominal packing diameter, etc.). The packed bed height must be specified since it determines
the desired separation and the capacity.

2.2.1 Tray Design: Fraction of flooding

The first task in this approach to tray design is to assign all layout parameters to consistent values
corresponding to the required capacity defined by the fraction of flooding and current flowrates. These
defaults function as starting points for subsequent designs.
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The initial free area ratio is taken to be 15 % of the active area. The active area is determined with
capacity factor calculation with internals specific methods (for sieve and bubble-cap trays the default is
Fair’s correlation by Ogboja and Kuye (19), and the Glitsch method for valve trays). The tray spacing
is initially set to the default value (of ����) and the downcomer area is calculated according the Glitsch
manual (limited by a minimum time residence check). From the combined areas the column diameter is
computed. The number of liquid passes on a tray is initially set by the column diameter; under ��� one
pass, under ��� two, ���� three, under ���� four, else five passes. With the number of passes and the
column diameter the total weir length is computed. Once the weir length is determined the liquid weir
load is checked, if too high the number of passes is incremented and a new weir length is evaluated until
the weir load is below a specified maximum.

Initial weir height is taken as 2”, but limited to a maximum of 15 % of the tray spacing. For notched or
serrated weirs the notch depth is a third of the weir height. For serrated weirs the angle of serration is
45 degrees. Circular weirs have diameters 0.9 times the weir length. Hole diameter is set to 3/16” for
sieve trays and tray thickness 0.43 times the hole diameter (or 1/10”). The hole pitch is computed from
the free area ratio and hole diameter according to a triangular pitch. The default downcomer clearance
is 1.5” but is limited by the maximum allowed downcomer velocity according to the Glitch method
de-rated with the system factor. The clearance is set to be at least half an inch lower than the weir height
to maintain a positive liquid seal but is limited to a minimum of half an inch.

For bubble-cap trays the cap diameter is 3” for column diameters below 4.5 ft and 4” for above. The
hole diameter can vary between 60 % to 71 % of the capdiameter, and default taken as 70 %. Default
skirt clearance is 1” with minimum of 0.5” and maximum of 1.5”. slot height can vary in between 0.5”
and 1.5”, default 1” for cap diameters below 3.5” and 1.25” for larger cap diameters. The pitch can vary
from 1.25” to half the flow path length (minimum number of rows is two), default set to 1.25”.

Valve trays are initialized to be Venturi orifice uncaged, carbon steel valves of 3 mm thick with 3 legs
(see Kister, 1992, p312). The hole diameter is 1” for column smaller than 4.5 ft, otherwise 2”. No
double weight valves are present.

The second task in the fraction of flooding method consists of finding the proper free area ratio (1 �

2�
2� � hole area / active area) so that no weeping occurs. This ratio can vary between a minimum
of 5% (for stable operation) and a maximum of 20%. To test whether weeping occurs, we use the
correlation by Lockett and Banik (1984): ������ . �
�. The method requires all liquid heights to be
evaluated at weep rate conditions. This task is ignored for bubble-cap trays. The weep test is done at
weeping conditions, with a weep factor at 60 % (this can be changed). Calculating liquid heights is done
by adding various contributions with correlations from Lockett (1986) and Kister (1992), see Appendix
A. If weeping occurs at the lower bound for the free area ratio, a flag is set for the final task to adapt the
design.

The final task consists of evaluating all liquid heights at normal conditions and to do a number of checks:

� vapor distribution (for bubble-caps),
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� weeping (for sieve/valve trays),

� hydraulic flooding,

� excessive liquid entrainment,

� froth height limit, and

� excessive pressure drop

If a check fails the design is adapted to correct the problem, according to the adjustments shown in
Table 2.5 after which new areas are calculated with capacity correlations. Part of this task is also to keep
the layout parameters that are adjusted within certain lower and upper bounds to maintain a proper tray
design. Finally the number of iterations for the design method is checked against a maximum (default
30) to prevent a continuous loop.

The adjustment factors ��, ��, and �� are percentual in/decrements, normally set at 5, 2, and 1 %. These
factors – together with all the default, lower, and upper settings that are used in the design routine – are
stored in a “design file” that can be tailored to handle specific kinds of designs and columns. This allows
the selection of different methods for capacity and hydrodynamic calculations as well. Also the fraction
that the flows need to change before a re-design is issued can be changed in this manner together with
other design criteria.

2.2.2 Packing Design: Fraction of flooding

For packed columns only the column diameter is a design parameter to be evaluated. Default packing
data are used for all packing parameters that are not specified; values of 1” inch metal Pall rings for
random packed sections and of Koch Flexipack 2 (316ss) for structured sections.

To determine the packed column diameter, the diameter that gives rise to the flooding pressure drop (as
specified) is computed using the selected pressure drop model. The resulting diameter is corrected for
the fraction of flooding and the system factor:

)	 �
)	�������
�� 0�

(2.34)

If no pressure drop model is selected the Leva (1992) model is selected (which is only a function of
the packing factor). If no pressure drop at flood is specified, it is estimated with Kister’s correlation
(1992) (which is only a function of the packing factor). Thus, as long as the packing factor is known,
this method will not fail.
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Table 2.5: Tray design checks and adjustments

Problem Test Adjustments
Bubble cap vapor distribution &��
&� . ��� ,� ��,

&����� � ��,
&���� � ��,
3� � ��

Weeping ���
��
�� 4 �� ��
��%% 4 ����

2� 4 2�� : 2� � 2��
5� � ��

else: 2� � ��
3� � ��
&� � ��

�� � �� (vt)
Hydrodynamic (downcomer) flooding) ' � 4 &��
�� '� � ��

2� � ��
&� � ��
&	 � ��

Excessive liquid entrainment 2� � ��
'� � ��
3� � ��
&� � ��

Froth height limit &� . ����'� 2� � ��
'� � ��
&� � ��

Excessive pressure drop 6+&�� . �, �
 2� � ��
&� � ��
3� � ��

,� �� (bc)
&����� � �� (bc)
&���� � �� (bc)

Excessive vapor entrainment 2� � ��
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2.2.3 Pressure drop

Tray design on pressure drop works as discussed above but with a default fraction of flooding of 75
%. However, the specified pressure drop functions as a maximum allowed pressure drop per tray. No
adjustment is done if the pressure drop is below this specified pressure drop.

Packing design automatically finds the diameter resulting in the specified pressure drop (with the se-
lected pressure drop model). This is done by using a linear search technique as the different packing
pressure drop correlations can behave quite irregularly. The maximum allowed pressure drop is the
flooding pressure drop as specified or computed from Kister’s correlation and the packing factor. If the
pressure drop is specified to be very low the column diameter might converge to unrealistic diameters.
A zero or larger than flooding pressure drop specification results in a 70 % fraction of flooding design.

Symbol List

�� Interfacial area density (��
��)
�
 Interfacial area (��)
2� Hole area (��)
2�, 2�!� Bubbling area (��)
2� Downcomer area (��)
� Number of components,

Molar concentration (���	
��)
3� Hole diameter (�)
) Binary diffusivity coefficient (��
�)
)	 Column diameter (�)
)� Eddy dispersion coefficient (��
�)
% Energy transfer rate (�
�)
��� Component � feed flow to stage � (���	
�)
��, ��, �� Design adjustment factors
�� Total feed flow rate to stage � (���	
�)
�� Packing factor (�
�)
�� F factor �� � 7�

�
+� (�6���
�����)

�� Fraction of flooding
�� Flow parameter �� � ��
��

�
+�� 
+

�
�

�� Froude number
6 Gravitational constant, 9.81 (�
��)
� Interlinked flow rate (���	
�)
& Heat transfer coefficient (�
�� / �)
&	 Clearance height under downcomer (�)
&	� Clear liquid height (�)
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&� Dry tray pressure drop height (�)
&�� Downcomer backup liquid height (�)
&� Froth height (�)
&� Liquid height at tray inlet (�)
&�� Liquid gradient pressure drop height (�)
&�, &� Liquid pressure drop height (�)
&�� Height of liquid over weir (�)
&� Residual pressure drop liquid height (�)
&�� Wet tray pressure drop liquid height (�)
&� Weir height (�)
&!�	 Liquid height pressure loss under downcomer (�)
# Molar enthalpy (�
���	)

#� Partial molar enthalpy of component � (�
���	)
� Molar diffusion flux (���	
���)
� Binary mass transfer coefficient (�
�)
/� K-value or equilibrium ratio component �: / � � 
�
��
� Liquid flow rate (���	
�)
�� Lewis number (�� � ��
��)
� Mass flow rate (kg/s)
� Mass transfer rate (���	
�)
� Number of stages
, Hole pitch (�),

Pressure (��)
�, Pressure drop (��)
�� �
 Maximum design pressure drop (��
���
 or ��
�)
�� Prandtl number
$ Heat input (�
�)
$� Volumetric flow over the weir (��
�)
� Ratio sidestream to internal flow
��	 Matrix defined by (2.13) and (2.14)
�� Schmidt number
0� System derating factor
� Residence time (�)
�� Valve thickness (�)
' Temperature (/)
'� Tray spacing (�)
� Vapor flow rate (���	
�)
5% Weber number
5� Weir length (�)
� Liquid mole fraction

 Vapor mole fraction
! Mole fraction
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Greek:
8 Fraction liquid in froth
1 Fractional free area 1 � 2�
2�,
� Fractional entrainment
+ Density (�6
��)
9 Surface tension (�
�)
: Viscosity (�� �)
�
	 Thermodynamic matrix
( Heat conductivity (5
�
/)

Superscripts:
; Interfacial
� Liquid
� Phase �
� Vapor

Subscripts:
�	��3 at flooding conditions
� component i
� stage �,

component �
�,%� specified
� total
� from interlinking stage �
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Chapter 3

Flow Models

Mass transfer models are developed that account for cross flow effects on large distillation trays while
avoiding the pitfalls that can strike while employing overall mass transfer coefficients in the calculation
of interphase mass transfer rates. New plug and dispersion flow models for the nonequilibrium column
model are proposed and found to predict tray efficiencies in general agreement with FRI experimental
data on large scale equipment. Several methods of evaluating binary mass transfer coefficients in dis-
tillation have been evaluated. Of the methods tested, that of Chan and Fair (1984) provides the best
predictions of column performance.

Additional evidence that the Maxwell-Stefan equations should be used in the calculation of mass transfer
rates in distillation is provided by comparing the predictions of the nonequilibrium model with the new
flow and mass transfer models with a simpler model based on all components having an equal facility
for mass transfer. Column designs obtained with the simple model can be very different (in terms of
numbers of stages, optimal feed, sidestream and controller locations) from those obtained with the more
rigorous approach.

3.1 Mass Transfer Modeling Inconsistencies

Consider transport across the gas/vapor - liquid interface. We shall denote the two bulk phases by “L”
and “V” and the interface by “I”. Though the analysis below is developed for liquid-vapor transport
the formalism is generally valid for all two-phase systems. Therefore, what follows applies equally to
distillation, stripping, and absorption operations.

At the V/L interface we have continuity of the molar fluxes � �
� and ��� , which include both diffusive

29
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and convective contributions

��� � ��� � 
��
�
� � �� � ��� � ���

�
� � ��� (3.1)

where the diffusion fluxes � are given by

��� � � ��� ��
� 	�
� � 

� (3.2)

���� � ��� ��
�	��
 � ��� (3.3)

and we consider transfer from the “V” phase to the “L” phase as leading to a positive flux. The matri-
ces of mass transfer coefficients are calculated with (2.11) from the �
	 (2.12) and ��	 matrices (2.13
and 2.14). The binary mass transfer coefficients for ��	 are estimated from empirical correlations as
functions of column design and operational parameters and physical properties including the binary pair
Maxwell-Stefan diffusion coefficients.

We also have continuity of the energy fluxes across the V/L interface

&� �' � � ' 
� �
	�
���

��� 
#�� � &��' 
 � '�� �
	�
���

��� 
#�� (3.4)

Correction factors that account for the effect of finite rates of mass transfer on both the mass and heat
transfer rate equations have been ignored in writing the above expressions; our experience is that their
influence is negligible in the type of operations considered here. To complete the model of interphase
transport at a point, we assume equilibrium prevails at the interface and relate the interface compositions
through the equilibrium relations.

Krishnamurthy and Taylor (1985) used a mixed flow model to represent the flow patterns on a cross-flow
distillation tray. This means that the rates of mass transfer can be calculated directly from equations
(3.1-3.4) with the bulk compositions and temperatures equal to those of the streams leaving the tray.
This is the simplest possible model of a cross-flow tray but it must be said that, for all but some small
laboratory and pilot scale columns, it is not a particularly accurate reflection of the true flow patterns
on a real distillation tray. The mixed flow model predicts tray efficiencies that are much lower than
they should be as shown in Figure 3.1 where we plot the Murphree tray efficiencies for a depropanizer
operating at a pressure of 15 ���. Column design parameters are provided in Table 3.1. Efficiencies
closer to, or even exceeding 100% would be expected for this sort of column. It must be emphasized
that the nonequilibrium model does not use efficiencies; Figure 3.1 is created using efficiencies that are
calculated from the results of a simulation. The reason for the low efficiencies is that in the mixed flow
model the composition differences between the streams leaving a tray (the ones used in the calculation
of the mass transfer rates) are the lowest on the tray.

A better (although still not perfect) description of the flow patterns on a distillation tray is to assume
that the vapor rises in plug flow through a locally well-mixed liquid and that the liquid traverses the
tray also in plug flow. These two assumptions are the key to the development of some tray efficiency
prediction methods (see AIChE, 1958; Lockett, 1986). Other methods are based on a dispersion model
for the liquid phase (Lockett, 1986).
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Table 3.1: Column Design Parameters for Depropanizer

Stages 2-10 11-24
Sieve plate material 316SS 316SS
Column Diameter (�) 5.07 7.15
Total tray area (��) 20.2 40.2
Number of passes 5 5
Tray spacing (�) 0.5 0.5
Flow path length (�) 0.862 1.19
Active area (��) 16.5 31.5
Total hole area (��) 0.932 1.57
Total downcomer area (��) 1.81 4.25
Hole diameter (��) 4.76 4.35
Hole pitch (��) 1.90 1.85
Total weir length (�) 19.1 26.5
Weir height (��) 5.08 4.64
Downcomer clearance (��) 4.58 3.37
Tray thickness (��) 2.54 2.54

All such developments, whether they be for binary systems or for multicomponent ones, are based on
the well-known addition of resistances formula for the overall mass transfer coefficients. For multicom-
ponent systems (see Toor, 1964; Taylor and Krishna, 1993)

��� � � ��� �/
"� 	�
� � 
�� (3.5)

where �
�� is the vector of mole fractions of a vapor in equilibrium with the bulk liquid and �/ "� 	 is
the matrix of overall mass transfer coefficients.

�/"� 	�� � ��"� 	 � ��� 	�� �
���
���

�� 	���	�� (3.6)

The matrix �� 	 is given by
�� 	 � �

� 
��



� � �/	�
�	 (3.7)

where �/	 is a matrix with the equilibrium ratios (K-values) on the main diagonal and zeroes everywhere
else.

These relations were not used by Krishnamurthy and Taylor (1985) in their development of a nonequi-
librium model; it is, however, straightforward to do so. The vapor phase diffusion fluxes � are calculated
from (3.2) with �/"� 	 substituted for ��� 	 and the liquid phase rate equations are omitted. The equi-
librium equations remain but use the bulk liquid mole fractions and the equilibrium mole fractions 
 �.

There are, however, several assumptions built into equation (3.6) that limit its usefulness. The most
important limitation is that the total molar flux must be zero. This assumption, which is common in the
analysis of distillation operations, rests on two other assumptions:
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Figure 3.1: Murphree efficiencies for a depropanizer predicted by a nonequilibrium model assuming
both vapor and liquid phases are completely mixed.

1. the differences between the partial molar enthalpies of vapor and liquid phases (essentially the
latent heats of vaporization) must be the same for all components.

2. that there is no sensible heat transfer between the phases (see chapter 11 of Taylor and Krishna
(1993) for a more detailed discussion).

Unequal latent heats can be accounted for quite easily by including the bootstrap matrices in the ex-
pression for the overall mass transfer coefficients (chapter 7 of Taylor and Krishna, 1993). However,
no similar expression for the matrix of overall mass transfer coefficients can be derived if we retain the
sensible heat transfer terms. We have encountered situations using equations (3.4), (3.5) and (3.6) where
the heaviest component transfers from the liquid to the vapor phases when, in fact, exactly the reverse
should take place. A graphic demonstration of this “phenomenon” can be seen in Figure 3.2 which
shows the liquid phase mole fractions for the depropanizer used earlier. Note that the mole fraction of
�-pentane actually decreases as the liquid approaches the feed tray. Figure 3.3 shows that the reason for
this is that the mass transfer rate of �-pentane is negative for several trays above the feed, indicating that
this particular component is being vaporized when, as the heaviest component in a chemically simple
system, it should be condensing. In fact, the mole fraction of �-pentane on all the trays above the feed
is much too high.
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Figure 3.2: Liquid composition profiles for a depropanizer predicted by a nonequilibrium model with
the molar fluxes calculated using overall mass transfer coefficients and the energy balance includes the
sensible heat transfer terms.

The incorrect prediction of the direction of mass transfer for �-pentane has nothing to do with diffusional
interaction effects modeled through use of the Maxwell-Stefan equations. The physical properties of
the components in this system are sufficiently similar that multicomponent diffusional interactions can
be discounted as an explanation for this problem. The situation occurs because we have created an
inconsistent model in which mass transfer rates are evaluated using the overall mass transfer coefficients
which pay no heed to sensible heat transfer together with the interfacial energy balance with the sensible
heat terms included. Since the total flux in most distillations is almost always very small (but not zero),
the sensible heat term is bound to be important since the energy balance involves the subtraction of two
small numbers. Unfortunately, to force equimolar overflow by making the latent heats equal and the
vapor, liquid, and interface have the same temperature (thereby making the sensible heat terms fall out
of the model equations) necessarily leads to liquids that are (slightly) superheated and to vapors that are
subcooled, possibly by significant amounts. Neither condition is likely to be encountered on every tray
of a distillation column even though it can occur in some cases. Further, we cannot use this method for
gas absorption where large temperature differences and significant departures from saturation are the
order of the day.

Equation (3.5) serves as the starting point for the development of point (and tray) efficiencies in multi-
component distillation and in the modeling of mass transfer in continuous contact devices (see chapters
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Figure 3.3: Interphase mass transfer rates for the depropanizer for the same combination of models used
in Figure 3.2.

12 and 13 of Taylor and Krishna, 1993, Toor, 1964). The key assumptions are that the matrix of overall
mass transfer coefficients can be considered constant and that the equilibrium vapor composition, 
 �,
varies only as the bulk liquid composition changes as it flows across the tray. However, this does not
eliminate the inconsistencies noted above.

The same assumptions can be used to derive expressions for the average mass transfer rates (rather than
the tray efficiency) for use in a nonequilibrium model. Taylor and Krishna (1993) give the expressions
for a model based on plug flow of vapor through a well mixed liquid. This does not help either.

We are faced with a problem. If we ignore the sensible heat transfer terms, we may use the overall
mass transfer coefficients (corrected only for unequal latent heats) but will suffer erroneous predictions
of the bulk phase temperatures. If we include the sensible heat transfer term in the energy balance but
omit its influence in the formula for the overall mass transfer coefficients (as we must) we run the much
more serious risk of predicting the wrong direction of mass transfer for some components. On the other
hand, the mixed flow model of tray hydrodynamics, which has none of these inconsistencies because
the overall mass transfer coefficients are not needed, clearly is an inadequate representation of the flows
on large trays leading to poor predictions of the tray efficiency. In an attempt to account for composition
changes over the flow path Krishnamurthy and Taylor (1985) used arithmetic or logarithmic averages
of the entering and leaving mole fractions. In this case predicted efficiencies may be larger than 100%.
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However, although good results for tray columns can be obtained using this averaging procedure, it is
fundamentally wrong.

A better model is needed which avoids as many of these inconsistencies as possible. Thus, one of the
objectives of this paper is to develop methods of estimating the mass transfer rates on a cross flow
distillation tray that do not use overall mass transfer coefficients. We do this by modeling the vapor
and liquid phase mass transport processes independently. In the next section we develop the model for
the vapor phase based on the assumption that the vapor rises in plug flow through the liquid phase.
After this we develop plug flow and dispersion flow models for the liquid phase. The predictions of
tray efficiencies obtained with the various models are compared to the methods we used before and to
experimental data of Yanagi and Sakata (1979, 1981, 1982) in order to see if the predicted efficiencies
are reasonable.

One of the other questions we shall address in this paper is to ask if there any significant differences
between column simulation results obtained using the Maxwell-Stefan formulation for the mass transfer
rates compared to a simpler approach that neglects interaction effects based on the assumptions that the
binary Maxwell-Stefan diffusion coefficients in each phase may be considered equal (at some average
value) and that the matrix of thermodynamic factors may be ignored. A related issue we shall investigate
is what correlation for the binary (Maxwell-Stefan) mass transfer coefficients (of several that have been
published) provides the “best” predictions of column performance.

3.2 Flow Models

In this section we develop flow models for cross flow distillation trays. We begin by developing the
equations for plug flow in the vapor phase. We then turn our attention to the liquid phase and develop
both plug flow and axial dispersion models.

3.2.1 Vapor Flow Model

As is commonly done in models of mass transfer on distillation trays we shall assume that the vapor
rises in plug flow through the liquid. If < � represents the molar flow rate of component � in the vapor
phase, � � �<� the total vapor flow rate, � the interfacial area per unit volume of froth, & � the froth
height, and 2� the active bubbling area, then the component material balances for the vapor phase may
be written as:

3<�
3&

� ����2� (3.8)

where �� is the molar flux of species � across the vapor-liquid interface. Summation of the component
material balances gives

3�

3&
� ����2� (3.9)
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where �� is the total molar flux. Substituting �� � ��� � 
��� and writing <� � 
�� results in

�
3
�
3&

� 
�
3�

3&
� ���� �2� � 
����2� (3.10)

The right members on both sides cancel each other and we obtain

�
3
�
3&

� ���� �2� (3.11)

In order to proceed further we need a model for the diffusion fluxes. In conventional treatments of
distillation we use equation (3.5) and assume that the matrix of overall mass transfer coefficients and
the equilibrium composition, 
�, is constant over the froth height. The assumption of constant 
 � is
equivalent to assuming the liquid is well mixed vertically and that the vapor-liquid equilibria may be
adequately by a linear equation. For reasons explained above we do not want to use overall mass transfer
coefficients. On the other hand we would like an analytical solution since numerical approximations
to the above differential equations will dramatically increase the computational cost of this kind of
simulation to the point where it might not be practical. We shall continue using equation (3.2) for the
vapor phase diffusion fluxes and make the assumptions that the matrix of vapor phase mass transfer
coefficients may be considered constant and that the interface composition, 
 
 , also may be assumed
constant over the froth height. If the resistance to mass transfer is confined entirely to the vapor phase
(an assumption often made in distillation calculations but one that is not always justifiable then our
assumptions of constant ��� 	 and 

 are equivalent to the conventional assumptions of constant �/ "� 	

and 
�. This gives us hope that our revised set of assumptions will provide acceptable results.

With the diffusion fluxes given by �� � � � ��� ��
� 	�= � where the mole fraction differences are �= � �

�
� �� �

�, we obtain

�
3�= �

3&
� ���� ��� 	�= ��2� (3.12)

With the above assumptions and the additional one that interfacial area per unit volume (�) is constant
we may integrate (3.12) from & � � and �= � � �= ��� up to a height & and mole fraction difference �= �:

�= � � ���

�
���� ��

� 	�2�&

�

	
�=��� � �����>N� 	�=��� (3.13)

where �N� 	 is the number of transfer units for the vapor phase, and > is a dimensionless height &
& � .
The mass transfer coefficient matrix, ��� 	, is evaluated at the bulk compositions leaving the tray. The
relation With (3.13) we relate the entering and leaving mole fraction differences:

�=�!�� � �����N� 	�=��� (3.14)

The average diffusion fluxes ��
�
� can be found from

��
�
� � ��� ��

� 	�= � (3.15)

where (= ) is the average mole fraction difference, given by

�= � �


 �

�

�= �>��3> � ������N� 	� �; 		��N� 	���=��� � ���N� 	�=�!�� (3.16)
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��� 	 is a matrix function defined as

��� 	 � ������ 	� �; 		�� 	�������� 		�� � ������� 	� �; 		��� 	�� (3.17)

Finally, the average molar fluxes can be computed with

��
�
� � ��

�
��2� �� ��


� � � ��
�
��2� �� ���



� � �= �� (3.18)

where it was necessary to neglect the covariance term (�� � �����
� � 
� �), anticipating that this term
is negligible (because the total flux usually is very small, at least in distillation operations). The molar
fluxes cannot be computed without this simplification. The average mass transfer rates are obtained by
multiplying the above expression by �2�&� .

Figure 3.4 shows the efficiency profiles for our depropanizer calculated assuming the vapor passes in
plug flow through a completely mixed liquid phase. Comparison with Figure 3.1 shows that the effi-
ciencies are substantially higher than they were when we assumed both phases were completely mixed.
However, we have not yet taken into account the effects of cross flow of the liquid.
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Figure 3.4: Murphree efficiencies for a depropanizer predicted by a nonequilibrium model assuming the
vapor rises in plug flow through a well-mixed liquid phase.
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3.2.2 Liquid Plug Flow Model

If we assume that the liquid flows across the tray in plug flow then we may derive the following expres-
sion for the mole fraction change in the liquid

�
3�?�

3!
� �����5&� (3.19)

where 5 is the weir length. We use equation (3.3) for the liquid phase diffusion fluxes �� �� �

���� ���	�?� where �?� � ���� �� ��
� � and obtain

�
3�?�

3!
� ���� ���	�5&� �?� (3.20)

Note that the sign is negative (as the flux is defined positive for transfer to the liquid phase) but the same
matrix function will be obtained in the solution. Integrating from ! � � and �?� � �? ��� to ! and mole
fraction difference �?� we obtain

�?� � ���

�
���� ��

�	�5&�!

�

	
�?��� � �����>N�	�?��� (3.21)

where �N�	 is the number of transfer units for the liquid phase, and > is a dimensionless length !
@.
The liquid diffusion flux is

��
�
� � ���� ���	���N�	�?�!�� (3.22)

and the molar fluxes follow from

��
�
� � ��

�
��2� �� ����


 � � �?�� (3.23)

The above expressions are based on the same sort of assumptions made in deriving the vapor plug flow
model; constant matrix of liquid phase mass transfer coefficients, neglect of the covariance term in the
average flux calculation and, perhaps most important of all, constant interface composition. The latter
assumption is needed in order to separate the vapor and liquid mass transfer calculations.

Now, while it might be acceptable to assume constant interface composition in the vapor phase in order
to integrate the vapor phase material balances at a single point on the tray, it is less reasonable to assume
that the interface composition is the same everywhere on the tray, even assuming the vapor mixes com-
pletely in the disengagement zone and, therefore, enters the tray with a uniform composition. Thus, the
vapor and liquid interface mole fractions, which are used in the equilibrium equations, represent calcu-
lated average compositions. At the very least the vapor interface mole fractions needs to be corrected.
The correction must be a function of the degree of liquid mixing on the tray and be identically zero if
the liquid is completely mixed. The correction of the vapor interface mole fraction can be related to
the change in the liquid mole fraction with the help of the equilibrium matrix, �� 	. The change in the
bulk mole fraction serves as an estimate of the correction to be made to the interface mole fraction. We
assume the correction is given by the following expression:

��

� � �� 	�? �?�!�� (3.24)
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which, on substituting for the liquid composition changes, becomes

��

 � � �� 	����N�	� �; 		?�!� (3.25)

This expression obeys all of our theoretical demands; the correction disappears for a completely mixed
liquid (? equals ?�!�). The correction also vanishes when �� 	 � ��	 as it should.

In practice the actual correction will be smaller than the above estimate since the change in interface
mole fraction must be less than the change in the bulk mole fractions. How much less is uncertain. In
the absence of a more soundly based model we use a multiplying factor of ���� to obtain a correction
which results in good estimates for experimental efficiencies as will be shown later.

The efficiency profiles for our depropanizer assuming both phases travel in plug flow are shown in
Figure 3.5. Notice a further increase in the component tray efficiencies, particularly those of the two
key components, propane and �-butane, and that the tray efficiencies now may be greater than 100%,
as is likely to be the case. Figure 3.6 shows the composition profiles and we see that the mole fraction
of �-pentane above the feed is very low and does not show the strange behavior observed in Figures 3.2
and 3.3.
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Figure 3.5: Murphree efficiencies for a depropanizer predicted by a nonequilibrium model assuming
both vapor and liquid phases are in plug flow.
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Figure 3.6: Liquid composition profiles for a depropanizer predicted by a nonequilibrium model with
the molar fluxes calculated using the plug flow models derived in this paper.

3.2.3 Dispersion Flow model

The starting point for a liquid dispersion-flow model is the differential equation for plug-flow (3.20)
expanded with a second derivative term which describes axial dispersion:

�
3�?�

3!
� )� 5&	��

�
�

3��?�

3!�
� ��� ��

�	�5&� �?� (3.26)

Introducing the dimensionless length > � !
@ we obtain

)� 5&	��
�
�

�@

3��?�

3>�
� 3�?�

3>
� ��� ��

�	�2�&�
�

�?� � � (3.27)

By making the substitution 2 � �
�� � )� 5&	��
�
� 
�@, this becomes

2
3��?�

3>�
� 3�?�

3>
� �N�	�?� � � (3.28)
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This second order differential equation can be solved analytically, using the substitutions � � �
�2 and
�A	 � ����N�	
�� �; 		��� and the boundary conditions at > � �:

3�?�

3>
� � (3.29)

�?� � �?�!�� (3.30)

to give �?� as the following function of >:

�?� � ��,	 ������	�> � ��	� ��	 ����,	�> � ��		 �A	��
�?�!��

�
(3.31)

where we have defined �,	 � ��; 	 � �A	 and ��	 � ��; 	� �A	. Integration over > � ��� �	 results in:

�?� �
�
�,	������	� �; 		��	��������		�� � ��	�����,	� �; 		�,	�������,		��

�
�A	��

�?�!��

�
(3.32)

which, using the � matrix function, is

�?� �
�

�
��,	���	� ��	��,		�A	���?�!�� (3.33)

Numerical evaluation of (3.33) for a binary system shows that for Peclet numbers going to zero we
obtain �?� � �?�!�� corresponding to a completely mixed flow. For very large Peclet numbers, (�� �)
say, �?� � ���N�	�?� (as already derived for plug flow). Of course, the computed average vapor
interface composition needs to be corrected as described above for the liquid plug flow model.

3.3 Evaluation of Flow Models

We have already shown how the flow models influence the tray efficiency with the help of a hypothetical
depropanizer. In this section we investigate the performance the flow models by comparing the predicted
efficiencies with experimental data on “large” diameter trays.

Murphree efficiencies as a function of the fraction of flooding for eight data sets were obtained from
FRI reports by Yanagi and Sakata (1979, 1981, 1982). Two systems were used in the FRI tests: the
cyclohexane - �-heptane system at pressures of 28, 34, and 165 ���, and the �-butane - �-butane
system at pressures of 1138, 2056, and 2756 ���. The experiments were carried out in sieve tray
columns operated at total reflux. It is worth pointing out that this data is for binary systems; there
is almost no published data for multicomponent systems on large scale equipment and what little is
available usually contains insufficient data to allow us to attempt a simulation.

Nonequilibrium simulations were done for a column with the same tray design (the design parameters
are summarized in Table 3.2) at a very high reflux ratio in order to closely approximate total reflux. The
Murphree efficiencies were calculated for each component on each tray from the results of a simulation
and averaged (over those trays not adjacent to condenser/reboiler). Simulations were done using four
different combinations of flow model.
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� Mixed vapor - Mixed liquid

� Plug flow vapor - Mixed liquid

� Plug flow vapor - Dispersion flow liquid

� Plug flow vapor - Plug flow liquid

Eddy diffusivities for use in the dispersion flow models were estimated using Zuiderweg’s (1982) corre-
lation (this model is recommended by Korchinsky, 1994). The mass transfer coefficients were estimated
using the Chan and Fair (1984) correlations as also recommended by Korchinsky (1994) (see, also, the
next subsection).

Simulations were carried out with flows that go from 20% to 100% of flooding. Results from some
of our simulations are shown in Figures 3.7 and 3.8, where the experimental data is shown as points
and the simulation results by lines. Limitations on space mean that only a small fraction of our re-
sults can be shown here; we have tried to show the most important trends by means of one figure per
system. For the simulations in Figures 3.7 and 3.8 the Chan and Fair correlations were used to show
the differences between the different flow models. The experimental efficiencies show a decline at low
and high fractions of flooding, probably due to weeping and liquid entrainment. The Chan and Fair
model includes a quadratic dependence of N� on the fraction of flooding in order to account for the
decrease in mass transfer at both low and fractions and high fractions of flooding. For this reason the
Chan and Fair method usually describes the mass transfer (and hence, the efficiencies) better than the
other mass transfer coefficient models. As we can see from Figure 3.8, the �-butane - �-butane system
has high Murphree efficiencies with values over 100%. Both figures show that the Mixed-Mixed flow
model underpredicts the efficiencies, as is true for the Plug flow vapor - Mixed flow liquid model. The
performance of the Plug flow vapor - Dispersion flow liquid and the Plug-Plug flow model are very
similar and model the experimental efficiencies quite well. This should not be too surprising as this data
was actually used in the development of the Chan and Fair correlations. We are, however, using the
correlations in a nonequilibrium model rather than in an efficiency calculation.

Only models including the dispersion or plug flow model for the liquid can predict efficiencies higher
than 100% (such as for the �-butane - �-butane system). This points quite clearly to the need to use a
liquid plug flow model with a correction added to the mole fraction difference.

3.4 Evaluation of Mass Transfer Coefficient Correlations

Four different methods for estimating the binary (Maxwell-Stefan) mass transfer coefficients for sieve
trays are available:

� AIChE method, as described by the AIChE Bubble Tray Design Manual (AIChE, 1958, Gerster
et al. 1958).
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Figure 3.7: Murphree efficiencies for different flow models for a (8% hole area) sieve tray column with
the cyclohexane - �-heptane system operating at 165 ���. Mixed-Mixed flow (thick dotted line), Plug
flow vapor - Mixed flow Liquid (thick dashed line), Plug flow vapor - Dispersion flow liquid (dashed
line), and Plug-Plug flow (solid line). Mass transfer coefficients from the Chan and Fair correlation.

� Chan and Fair (1984).

� Zuiderweg (1982).

� Chen and Chuang (1994).

A summary of the specific equations used to calculate the binary mass transfer coefficients is given by
Taylor and Krishna (1993).

Figures 3.9 and 3.10 show the behavior of the above mass transfer coefficient correlations, using the
Plug flow vapor - Dispersion flow liquid models. In general, the AIChE and the Chan-Fair correlations
behave in essentially the same way, except for the strong dependence on the fraction of flooding of
the Chan-Fair model. This is not surprising since both use the same expression for the liquid mass



44 Chapter 3: Flow Models

 

0 20 40 60 80 100 
Fraction of flooding (%)

 120

100

80

60

40

20

0 

M
ur

ph
re

e 
E

ff
ic

ie
nc

y 
(%

)

Figure 3.8: Murphree efficiencies for different flow models for a (8% hole area) sieve tray column with
the �-butane - �-butane system operating at 2068 ���. Mixed-Mixed flow (thick dotted line), Plug flow
vapor - Mixed flow Liquid (thick dashed line), Plug flow vapor - Dispersion flow liquid (dashed line),
and Plug-Plug flow (solid line), Mass transfer coefficients from the Chan and Fair correlation.

transfer coefficients. The Zuiderweg and Chen-Chuang models also behave in the same way in the
sense that they predict higher efficiencies as they have higher values for the liquid number of transfer
units than the first two correlations. This also makes the difference between mixed and plug liquid flow
larger for these correlations. Overall, the Zuiderweg and Chen-Chuang models tend to overpredict the
Murphree efficiencies (as is shown in Figure 3.10). The Chan-Fair correlation tends to describes the
overall behavior of the Murphree efficiencies better than the other correlations.

In another recent study Korchinsky et al. (1994) recommended both the Chan and Fair method and set
of correlations due to Stichlmair (1978). We did not include the Stichlmair correlations in this study as
our experience is that this method does not extrapolate well to conditions beyond the range of parameter
values for which the correlations are designed. While it might be argued that no correlation should be
used beyond its published range, we believe that correlations should be developed that extrapolate in
sensible ways and provide a reasonable numerical result when used outside its range. Stichlmair’s cor-
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Table 3.2: Sieve Plate Dimensions of FRI Column

Column diameter (�) 1.2
Tray spacing (�) 0.61
Sieve plate material 316SS
Plate thickness (��) 1.5
Hole diameter (��) 12.7
Hole pitch (��) 30.2
Weir length (�) 0.94
Weir height (��) 25.4,50.8
Downcomer clearance (��) 22,38
Effective bubbling area (��) 0.859
Hole area (��) 0.118

relations fall short of this goal. The same criticism can also be levelled at the Chan and Fair correlations,
mostly due to the built-in quadratic dependence on the fractional approach to flooding. The quadratic
function in the Chan-Fair correlation for example, always has its maximum at a fraction of flooding
of about 0.6 (depending on how the liquid height varies with the fraction of flooding). This limits the
model to sieve trays only and to the range of fractions of flooding where the quadratic term is positive
(the fraction of flooding must lie between � and ���). Presumably, the fall-off in tray performance at low
and high fractions of flooding is due to increases in weeping or entrainment at these extreme flows. It
is not clear to us that mass transfer coefficient correlations should account for these effects. It would be
better to develop separate corrections which are applied to the mass transfer coefficients using the actual
entrainment and weeping rates (see Lockett et al., 1983, 1984). This would separate the influences of
these phenomena from models that describe the mass transfer process. We have encountered situations
where the Chan and Fair correlations provide negative mass transfer coefficients because the flows are
outside this range. Not only are negative mass transfer coefficients physically meaningless, they prevent
the program that implements our nonequilibrium model from converging to a solution! Despite this
problem with the Chan and Fair method we think its limitations are less serious (from our perspective)
than are the limitations of other methods and, for now, it is our method of choice.

The resistance to mass transfer in distillation operations often is assumed to reside entirely in the vapor
phase although this is by no means a settled issue (see Lockett, 1986). The simulations carried out for
this paper suggest that for the cyclohexane - �-heptane system the liquid phase contributes about 15% of
the resistance. This figure rises to about 30% for the �-butane - �-butane system. Clearly, the resistance
in the liquid phase is too large to be ignored.
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Figure 3.9: Murphree efficiencies for different Mass Transfer Coefficient models for a (14% hole area)
sieve tray column with cyclohexane - �-heptane system operating at 34 ���. Chan and Fair (thick
dotted line), AIChE (thick dashed line), Zuiderweg (dashed line), and Chen and Chuang (solid line).

3.5 Maxwell-Stefan or Not?

There is no doubt that using the Maxwell-Stefan equations in order to calculate the matrix of multi-
component mass transfer coefficients imposes a significant computational penalty on the use of mass
transfer models of distillation. The penalty is not significant for the completely mixed flow models (of
both phases) since the mass transfer rate equations can be written in a form that requires only a couple of
matrix-vector multiplications. However, the plug flow vapor and liquid models require the evaluation of
exponential matrices which is significantly more time consuming. Worst of all is the dispersion model
which involves the computations of the square root of a matrix which cannot be evaluated anywhere
near as efficiently (in general) as can the exponential matrix. For these latter models the computational
penalty can be severe, especially for systems with many components. We pose the question: Should we,
in fact, use the Maxwell-Stefan equations or should we be content with a simpler model that is based on
identical mass transfer coefficients for all components. In this latter case, if we also neglect thermody-
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Figure 3.10: Murphree efficiencies for different Mass Transfer Coefficient models for a (14% hole area)
sieve tray column with �-butane - �-butane system operating at 1138 ���. Chan and Fair (thick dotted
line), AIChE (thick dashed line), Zuiderweg (dashed line), and Chen and Chuang (solid line).

namic interactions in the mass transfer rate equations, all of the matrices involved are diagonal which
means that no matrix function computations are required at all. The benefit is a significant decrease in
the computer time requirements.

The answer is that there are a great many cases where we do not need the rigor of the Maxwell-Stefan
equations but there are cases where it is essential to use them. Figures 3.11 to 3.13 provide two examples.
In Figure 3.11 we show part of the liquid phase composition profile for an extractive distillation of an
acetone - methanol binary using water as the extractive agent. The figure shows the profiles towards the
bottom of the column with the multicomponent mass transfer coefficients computed using the Maxwell-
Stefan equations and using a model in which all the diffusion coefficients are set equal to the average
value and where thermodynamic interactions are ignored as well. Figure 3.12 shows the temperature
profiles for the same system. While the profiles are qualitatively similar, there are significant quantitative
differences between them in the sense that the mole fractions and temperatures on a given tray can be
sufficiently different to influence both the design and operation of this column. McCabe-Thiele diagrams
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Figure 3.11: Liquid phase composition profiles for acetone - methanol - water extractive distillation
column. Solid line - Maxwell-Stefan model, dashed line - equal diffusivity model.

(not shown here) show that for the calculations using the full Maxwell-Stefan model the feed stage is
located in close to the optimal position. The same cannot be said for the calculations with the equal-
diffusivity model; the McCabe-Thiele diagram for that case shows that the feed tray is several trays
removed from its optimal location. A design carried out with the two different mass transfer models
could provide quite different initial column configurations.

Some extractive and azeotropic distillation operations are controlled by knowing precisely where steep
temperature and composition fronts exist. In these cases it is essential to know exactly where these
fronts are located. An equal diffusivity mass transfer model might suggest that the controllers should be
located on a tray different from that suggested using the Maxwell-Stefan equations as the basis for the
design.

Figure 3.13 shows the composition profiles for a large column distilling ethanol - �-butanol - water.
The profiles obtained with the Maxwell-Stefan model and the equal-diffusivity model are, as in the
previous case, qualitatively similar. However, the apparently small differences between the mole fraction
profiles translate into an enormous difference between the methods if we seek to design a column that
can produce products of the required purity (see, also, Krishnamurthy and Taylor, 1985c). Different
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Figure 3.12: Liquid temperature profiles for acetone - methanol - water extractive distillation column.
Solid line - Maxwell-Stefan model, dashed line - equal diffusivity model.

designs might be obtained using the two types of mass transfer model for distillation columns with a
complicated configuration (multiple feeds and sidestreams). Another advantage of the Maxwell-Stefan
formulation is that it becomes unnecessary to select a pair of key components on which to base the mass
transfer coefficient calculation. All things considered we feel that the additional realism afforded by the
Maxwell-Stefan formulation is worth the significant computational penalty associated with the model.

Symbol list

� Interfacial area per unit volume (��
��)
� Parameter � ��
�

2� Bubbling area � 5 @ (��)
�A	 Parameter matrix � ����N�	
�� �; 		���

�� Molar concentration (���	
��)
)� Eddy diffusivity (���	
� ��)
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Figure 3.13: Liquid phase composition profiles for ethanol - �-butanol - water distillation column. Solid
line - Maxwell-Stefan model, dashed line - equal diffusivity model.

& Height (�), or
Heat transfer coefficient (5
��/)

&	� Clear liquid height (�)
&� Froth height (�)
# Molar enthalpy (�
���	)
� Diffusion flux (���	
� ��)
� Mass transfer coefficient
�/	 Matrix of K-values (


�
 on main diagonal)
� Liquid flow rate (���	
�)
�� 	 �

� 
��



�

� Molar flux (���	
�)
N Binary matrix of Number of Transfer Units (NTU)
�� Peclet number � )%5&	��

�
� 
�@

' Temperature (/)
� Vapor flow rate (���	
�)
5 Weir length (�)
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� Liquid mole fraction
? Liquid mole fraction difference

 Vapor mole fraction
= Vapor mole fraction difference
! Path length (�)
@ Total liquid flow path (�)

Greek:
� Fractional flow,
� Matrix function given by (3.17)
> Dimensionless height or length

Superscript:
� Liquid phase
� Vapor phase
� Equilibrium

Subscript:
� Component �
% Entrainment
� Total
B Weeping
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Chapter 4

Dynamic Model Development

Dynamic nonequilibrium models for tray columns are developed. A full model with four holdup terms
describing both froth and downcomer, as well as a two holdup model with only froth holdup terms, are
introduced. The nonequilibrium models will be compared to corresponding conventional equilibrium
models which are also described in this chapter. Finally, issues concerning the implementation and the
integration of dynamic column models are discussed.

4.1 Nonequilibrium Model Assumptions

A schematic diagram of a general tray in a column is provided in Figure 4.1. Of central importance is
the zone where vapor and liquid phases are brought into contact with each other in order to promote
mass and energy transfer between the phases. A tray can operate in different flow regimes: spray, froth,
emulsion, bubbling liquid, or foam. Here we will generally refer to the dispersion on the tray as the froth,
although we do not limit our model to that regime. Above the froth is an area for vapor disengagement,
to separate the phases to let them move countercurrently in the column. Similarly we have a downcomer
for liquid disengagement. These disengagement areas are essential to the operation of a trayed column
and certainly play a role in its performance.

What differentiates the dynamic model from the steady-state model (as described by Taylor et al., 1994)
is the use of holdup terms. For steady-state simulation holdup calculations are not required, however,
in the dynamic model they represent the basic differential equations. For the general tray a number of
distinct holdups can be identified:

� the liquid in the froth on a tray,

� the vapor dispersed in the froth on a tray,

55
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Figure 4.1: Schematic diagram of a general tray.

� the liquid in the downcomer below a tray,

� the vapor above the froth/downcomer on a tray.

The froth is modeled by two (or more, if multiple liquid phases are present) separate holdups. Figure
4.2 is a schematic diagram of these holdups and also shows the connecting flows between the different
holdups. The following assumptions have been made in our dynamic nonequilibrium model:

� The trays are in mechanical equilibrium

� Thermodynamic equilibrium is assumed only at the interface between vapor and liquid phases on
the tray. This is standard practice in the analysis of interphase mass transfer processes.

� Mass transfer occurs only between vapor and liquid on the tray, dictated by the transfer resistance
in each phase

� Condenser and reboiler operate at equilibrium.

The dynamic model developed here uses all four holdups terms and avoids simplifications often made
in other dynamic models such as constant holdups, neglecting energy derivatives, neglecting vapor
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Figure 4.2: Schematic diagram of the holdups and connecting flows.

holdups, and constant (tray/component) efficiencies. To reduce the number of model equations the
holdup terms for the vapor above the froth and in the downcomer can be lumped into the froth holdups
or ignored (if it is desired to do so).

4.2 Nonequilibrium Model Equations

Component molar holdup terms are denoted with 7 ���� where � indicates the holdup phase type (� or
�), B the place in the model (� for froth, 3 for downcomer, and � for above the froth), � the component,
and � the plate number. Similarly, total molar holdups are denoted with 7 ���� and energy holdups with
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"��� . Vapor and liquid holdup compositions are computed from


��� �
7� ���
7� ���

(4.1)

���� �
7����
7����

(4.2)

The interstage liquid and vapor flows on plate � are denoted with ��� and � �� where B indicates the
holdup from which the flows originate (� , 3, or �). Component molar feed flows are denoted similarly
to molar holdups as � ���� . The mass transfer rates through the interface are positive from vapor to liquid
and denoted by ���� .

For a general stage (one not at the top or bottom of the column) the component molar balances over the
four different holdups are:

37� ���
3�

� 
�������
�
��� � � � ��� � 
����

�
� ����� (4.3)
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�
� � ����� � �����

�
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These equations may be extended to include fractional entrainment (��� , ��� ), weep flow ratios (B�),
sidestream flow ratios (��), and interlinking flows (���� ). This is not done here (see, however, Taylor
et al., 1994). To correctly model the behavior of a column outside normal operational conditions the
inclusion of entrainment and weep flows is essential.

The component molar holdups must sum to the total molar holdups:

� �

	�
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7� ��� � 7� ��� (4.7)
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The energy balances for each holdup are:
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where C is the energy transport to/from the interface (see below). # ���
�� is the partial molar enthalpy of

component � in the feed to the specified holdup and $��� is the heat input into the specified holdup. The
energy holdups "��� are related to the component molar holdups and the component enthalpies (# ��

�� )
by

� �
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Enthalpies are functions of the holdup temperature, ' ��� , pressure, ,� , and holdup molar compositions.
The energy fluxes from the vapor to the interface and from the interface to the liquid on plate � are:
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where ' 
� is the temperature of the interface on plate �. The energy balance over the interface equates
these energy fluxes:

� � C� �� � C��� (4.21)

The interface compositions �
��� and 

��� must sum to unity,
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and obey the equilibrium relations (� � � � � � �) as well:

� � /
��� �

�
�� � 

��� (4.24)

The mass transfer rates ��� from the vapor to the interface are equal to the mass transfer rates from the
interface to the liquid. They are computed with the following rate equations:
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where ��� is the total mass transfer rate on plate � which equals to the sum of all the component mass
transfer rates ��� . �� � and ��� are the molar concentrations of the vapor and liquid phase of the froth.
Note that only �� � fluxes, with c being the number of components, are independent and we will obtain
���� �� rate equations. Also note that the rate equations are in matrix/vector form. The rate matrix ��	

is defined by (2.13, 2.14) and the thermodynamic factor matrix 
 by (2.12).

The pressure, ,� , is computed from the tray pressure drop and the pressure of the tray above. The
pressure at the top of the column is specified (,���	):

� � ,� � ,���	 (4.27)

� � ,� � ,��� ��,��� (4.28)

����� is the pressure drop for the specific type of column internals (computed empirically or theoreti-
cally, Taylor et al., 1994).

The interholdup flow rates are determined through calculation of the total molar holdups. The total
molar holdups can be computed from the height of the froth, & �� , the clear liquid height, &	�� , the tray
spacing, &��� , and the liquid height in the downcomer, &�� , of plate �:
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The liquid heights are computed by empirical correlations or theoretical relations (see Appendix A).
Note that each total holdup must be a function of the relevant flow rate (e.g. 7 ���� should be a function
of ��� , etc.) to prevent higher index systems (more on this topic below). Since this is not the case for
(4.31) we can replace it with

� � � �� � � �� (4.33)

to use a constant molar vapor holdup above the froth (usually the change in 7 � ��� is small). This assump-
tion maintains the index of the system at one (instead of two) but violates the physical constraint of a
fixed volume between the trays. For the correct dynamic simulation it is important that the liquid height
correlations behave correctly besides being accurate (which is not required for steady-state simulation).
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Alternatively, instead of computing the total holdups from liquid heights, which are computed from em-
pirical correlations, the liquid and vapor flows could be computed directly from empirical or theoretical
relations. Models describing the holdup or flow need to be accurate and have the correct behavior. Since
the number of models which describe liquid heights and froth densities is much larger in comparison to
models describing the flows, holdups are being calculated.

The variables and equations, as well as their number, type, and association, are summarized in Tables
4.1. The association is non-trivial as it determines the index of the resulting system of equations. Each
variable must be represented (either directly or indirectly) in its associated equation to prevent the gener-
ation of a higher index DAE system. That is why the flow variables are matched up with the calculation
of the molar holdups from the liquid heights (or directly from the calculation of the flows if that alter-
native is chosen). That is also why the mass transfer rates (� ��) are somewhat strangely paired with the
equilibrium (4.24), mass transfer rate (4.25, 4.26), and interface composition summation (4.22, 4.23)
equations (together with the interface compositions 
 
��� , �
��� ).

The total number of equations is ����� per general stage where � represents the number of components
in the system. Out of these, ���� equations are ordinary differential equations while the rest (�����)
are algebraic equations. The feed flows (� ), heat inputs ($), top and condenser pressures (� ���	, � 	),
and product streams (), D) are functions of time. If they are constants we are solving a steady-state
(SS) process, where all differential terms are set to zero. If they change over time we switch to dynamic
simulation (DS) where we solve the resulting Differential-Algebraic system of equations until steady-
state is reached (or until the variable changes are less then some specified small fraction). Of course,
only during a steady-state simulation can we activate the design-mode which simultaneously corrects
the column design to handle the process flows at hand. The resulting design can then be directly used
for the dynamic simulation.

A simplification of this full tray model results from ignoring the vapor above the froth and the liquid in
the downcomer. Equations 4.5, 4.6, 4.9, 4.10, 4.13, 4.14, 4.17, 4.18, 4.31, 4.32 are omitted from this
model which has just ����� variables. The neglected downcomer and vapor holdup could be optionally
lumped into the liquid and vapor holdup equations (4.29, 4.30).

As mentioned before, the simplified model can (optionally) lump the downcomer liquid and/or vapor
above the froth with the liquid or vapor froth holdup, respectively. Also, all holdups can be calculated
at steady-state and kept constant during the dynamic simulation. However, lumping holdups, or keeping
them constant, are not good representations of the real behavior of trays.

4.3 Reboiler and Condenser

Distillation columns also have various types of condensers and reboilers that usually have a significantly
larger holdup than the holdup on any tray to give the column operational stability. It is these larger
holdups that lead to differences in the transient behavior of various variables and, therefore, have a large
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Table 4.1: Variables and equations for the full dynamic model

Variable(s) Equation(s) Number Differential
7� ��� , 7���� , 7� ��� , 7���� (4.3), (4.4), (4.5), (4.6) �� �

"� �� , "��� , "� �� , "��� (4.11), (4.12), (4.13), (4.14) � �

7� ��� , 7���� , 7� ��� , 7���� (4.7), (4.8), (4.9), (4.10) � �
� �� , ��� , � �� , ��� (4.29), (4.30), (4.31), (4.32) � �

' � �� , '��� , ' � �� , '��� (4.15), (4.16), (4.17), (4.18) � �
' 
� (4.21) � �
��� (4.25), (4.26) � �
�
��� (4.26), (4.23), (4.24) � �


��� (4.24), (4.22) � �
�� (4.27), (4.28) � �

effect on the column behavior. They also cause the system of equations to be very stiff.

The reboiler is modeled as a liquid holdup in the bottom of the column followed by a partial (equilib-
rium) reboiler. The holdup component molar balances (�) are:

37���
3�

� ����
�
� � ����� (4.34)

where the liquid mole fraction is computed by:

��� �
7���
7���

(4.35)

and the tray above the reboiler is tray �. The total holdup is computed by summing the component
holdups:

� �

	�
���

7��� � 7��� (4.36)

Assuming a constant molar holdup we write the total molar balance (for dynamic state):

� � ��� � �� (4.37)

We could also assume a more realistic constant volumetric holdup for the reboiler. At steady-state this
equation is replaced by a direct specification of the molar (or possibly volumetric) holdup in the reboiler:

� � 7��� � 7�������	 (4.38)

The energy holdup and energy relation are:

3"�
3�

�
"���
7���

��� �
"�
7���

�� (4.39)
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Table 4.2: Variables and equations for the reboiler model

Variable(s) Equation(s) Number Differential
7��� (4.34) � �

"� (4.39) � �

7��� (4.36) � �
�� (4.37) / (4.38) � �
'� (4.40) � �
�� (4.41) � �
�� (4.42) � �

�� (4.43) � �
'� (4.44) � �
��� (4.44), (4.45) � �
$� (4.46) � �
D (4.47) � �

� �

	�
���

�#���7
�
����"� (4.40)

The pressure is determined from:
� � ,� � ,� ��,� (4.41)

For a partial reboiler we have total and component molar balances (� � �), equilibrium relations(�), a
summation equation for the vapor and liquid mole fractions (�), and an energy balance (�):

� � �� � �� �D (4.42)

� � ����� � 
���� � ���D (4.43)

� � /����� � 
�� (4.44)

� �

	�
���

�
�� � ���� (4.45)

� �
"�

7���
�� �$� �#�� �� �#�� D (4.46)

where $� represents the reboiler duty, D the bottoms flow, and �� the boilup vapor returned to stage �.
Various reboiler specifications can be used, for example, the specification of the bottoms flow:

� � D �D���	 (4.47)

The (�� � �) variables are 7��� , 7
�
��, "�, '�, ��, ��, ��, 
��, $�, '�, ��� , and D (see Table 4.2). In the

case of a total reboiler with a vapor product, � ��D in the reboiler mole balance becomes 
��D and #�� D
in the energy balance becomes # �� D. For a total reboiler with a liquid product, � ��D in the reboiler
mole balance becomes ���D and #�� D in the energy balance becomes "�D
7���.
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The condenser is modeled as a total condenser and reflux drum. The total condenser has the normal
(����) equations. The variables are the liquid product flow, � 	, the temperature, '	, heat duty, $	, and
the vapor and liquid mole fractions, � �	 and 
�	. The condenser equations are, respectively, a total molar
balance, component molar balances (�), an energy balance, equilibrium relations (�), and a summation
equation:

� � �� � �	 (4.48)

� � 
���� � �	��	 (4.49)

� � #�� �� �$	 �#�	 �	 (4.50)

� � /�	��	 � 
�	 (4.51)

� �
	�
���

�
�	 � ��	� (4.52)

The pressure of the condenser, �	���, is specified. Again, the ordering of these variables and equations
is important to avoid index problems. The reflux drum has a vapor and a liquid holdup. Thus, we have �
component molar holdups (7 ���! � ), a total molar holdup (7 ���! � ), and an energy holdup ("���! ).
We have a liquid distillate flow ()�) and a returning liquid reflux (�). The molar component balances
are:

37���! �

3�
� ��	�	 � ���! � �)� ��� (4.53)

with the total holdups:

� �

	�
���

7���! � � 7���! � (4.54)

The energy balances are:
3"���! 

3�
� #�	 �	 �

"���! 

7���! �

�)� ��� (4.55)

The energy holdups are equated to the products of the molar holdups and enthalpies to determine the
liquid drum temperature (' ���! ):

� �

	�
���

�7���! � #���! � ��"���! (4.56)

We have a total of ��� equations and variables: 7 ���! � , 7���! � , "���! , '���! , �, and distillate
rate )�. Combined with the condenser this gives ���� variables and ���� equations. The extra equa-
tions needed are the condenser specification and constraint. For unsteady-state simulation the condenser
constraint is a constant molar holdup:

� � �	 � �)� ��� (4.57)

or constant volume holdup:

� �
�	
��	
� �)� ���

����! 
(4.58)
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Table 4.3: Variables and equations for the condenser model

Variable(s) Equation(s) Number Differential
�	 (4.48) � �
��	 (4.49) � �
'	 (4.51) � �

�	 (4.51), (4.52) � �
$	 (4.50) � �

7���! � (4.53) � �

"���! (4.55) � �

7���! � (4.54) � �
'���! (4.56) � �

� (4.57) / (4.58) / (4.59) / (4.60) � �
)� (4.61) � �

Again, for the steady-state simulation this equation is replaced by the direct specification of the molar
holdup:

� � 7���! � � 7���! �����	 (4.59)

or, the specification of the volumetric holdup:

� �
7���! �

����! 
� � ��! ���	 (4.60)

Various steady-state condenser specifications can be used. For example, fixing the reflux ratio (��) is
represented by

� � )����� (4.61)

The variables and equations of the condenser are shown in Table 4.3. The vapor/liquid holdups in
the connecting pipes between column and condenser/reboiler are neglected, but can be incorporated if
necessary.

4.4 Equilibrium models

The nonequilibrium models developed above will be compared with the corresponding results from
two equilibrium models which use a specified tray efficiency, � � (assumed constant over the integration
interval). The first model (EQL) neglects the vapor holdup and only the liquid holdup in the froth is
included. This holdup can be computed by (4.30) or held constant (computed at steady-state or user
specified). The set of equations for this model are:

37��
3�

� 
��������� � ���������� � ��� � 
���� � ����� (4.62)
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Table 4.4: Variables and equations for the EQL model

Variable(s) Equation(s) Number Differential
7�� (4.62) � �

7�� (4.63) � �
"� (4.65) � �


�� (4.67) � �
�� (4.68) � �
�� (4.64) � �
'� (4.66) � �
�� (4.69) � �

� �
	�
���

7�� � 7�� (4.63)

� � &	�� 2
�
� �
��
� � 7�� (4.64)

3"�
3�

� �

	�
���


�����#
�
���������� � �

"���
7�����

����� �

	�
���

#������ �$�

��
	�
���


��#
�
�� ��� � �

"�
7�

��� (4.65)

� �

	�
���

#���7�� �"�� (4.66)

� � ��/����� � 
�� � ��� ���
����� (4.67)

� �

	�
���


�� � � (4.68)

� � ,� � ,��� ������ (4.69)

where we have ��� differential equations. The tray pressures are computed with the tray pressure drops
(the pressure of the tray at the top of the column specified). Table 4.4 lists the �� � � equations and
variables.

If the vapor holdup is not neglected we obtain the following set of equations (model EQLV):

37���
3�

�
37���
3�

� 
��������� � ���������� � ��� � 
���� � ����� (4.70)

� �

	�
���

7��� � 7��� (4.71)

� �

	�
���

7��� � 7��� (4.72)
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� � �&�� � &	�� �2
�
� �
� �
� � 7��� (4.73)

� � &	�� 2
�
� �
��
� � 7��� (4.74)

3"��
3�

�
3"��
3�

� �
"����
7������

����� � �
"����
7������

����� �
	�
���

#������ �$�

��"
�
�

7��
��� � �

"��
7��

��� (4.75)

� �

	�
���

#���7
�
�� �"��� (4.76)

� �
	�
���

#���7
�
�� �"��� (4.77)

� � ��/����� � 
�� � ��� ���
����� (4.78)

� � ,� � ,��� ������ (4.79)

(4.80)

with �� � differential equations and a total of ��� � equations and variables (7 ��� , 7��� , 7
�
�� , 7��� , "

�
� ,

"�� , �� , �� , '� , and ��). Again, neglected holdups could be lumped in as discussed previously.

4.5 Physical Property Models

So far only mathematical equations of the dynamic model have been discussed. However, the successful
implementation of a column solver requires more than “just solving” the equations. A large and impor-
tant part of a process simulator are the physical property models which supply the K-values, activity
coefficients, binary diffusivities, densities, heat capacities, enthalpies, vapor pressures, viscosities, ther-
mal conductivities, surface tensions, and binary mass transfer coefficients. A nonequilibrium model has
a much higher demand for properties compared to an equilibrium model (Taylor et al., 1994). Property
models also impose a problem specially associated with dynamic simulation. Often, different correla-
tions are used over different state variable ranges. When a switch between different correlations occurs
due to a change in a state variable (such as temperature, pressure, or composition) it causes a discontinu-
ity in the simulation. For the sake of consistency, properties need to be continuous and differentiable at
or around any switching points. Depending on the solver used, proper handling of these discontinuities
may require the physical property model/correlation switches to be signaled in some way. However, this
is not (yet) done in the present implementation of the models described above. Rather, discontinuities
of this kind are avoided as much as possible by using a single correlation for the whole integration. This
has implications for the manner in which the model equations can be integrated.
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4.6 Solving the Dynamic Nonequilibrium Model

The system of model equations consists of differential equations for the molar and energy balances
and algebraic equations for all other relations. Therefore, we obtain a Differential-Algebraic system of
Equations (DAE). A general form of a differential-algebraic system of � equations is:

��������� � � (4.81)

����� � �� (4.82)

where functions�, variables � and derivatives � � are � dimensional vectors. The solution is traced over
time (�) from the initial (at � � ��) variable values ��. Typical DAE systems are large and sparse sets of
stiff differential equations and nonlinear algebraic equations. Stiff differential equations mean that there
are greatly differing time constants present, or, in other words, the eigen values of the Jacobian (��
��)
are widely spread over the negative halfplane. This implies the use of implicit integration techniques
which require derivative (Jacobian) information and thus, more calculations. The more nonlinear the
equations are, the more the stepsize will be restricted since it will be limited by the more local character
of the Jacobian information (which is used to ”follow” the solution which is dictated by the algebraic
constraints).

Two approaches are used to solve DAE systems. The procedural approach separates the algebraic equa-
tions from the differential equations, trying to solve the algebraic equations after each integration step
for the differential equations. Although this might seem advantageous (the resulting two systems are
of smaller dimension) it is not a rigorous method and may lead to obtaining a false transient. The
other approach in solving a DAE system is to integrate the whole system of differential and algebraic
equations simultaneously. There are two main types of such DAE solvers: those that employ Back-
wards Differentiation Formulae (BDF) and the one step (semi-) implicit methods (such as Runge-Kutta
methods).

BDF methods replace the time derivative � � by a difference formula approximation, by using previous
variable values, resulting into systems of just algebraic equations which can be solved with a Newton
type method. Generally only a few Newton iterations are applied, otherwise the stepsize will be reduced.
For efficiency, instead of using a first order approximation for � �, usually higher order BDF (limited to
15) are used. Selecting order and stepsize is automatized by the code through truncation error control.
However, to switch order and stepsize at the same time makes this type of codes rather complicated.

The initial stepsize for BDF methods must be carefully chosen. If it is too small, we may fail to solve
the system because the iteration matrix is very poorly conditioned, even though the problem might have
been solved successfully given a better (larger) choice of initial stepsize. The method requires consistent
initial derivative information to start, which must be either obtained through a one step algorithm or a
specially supplied user routine. Unpleasant problems may occur if some derivatives are discontinuous.
If we were to solve such a problem numerically, we would hope that the code could find the discontinuity
and pass over it, or at least fail at the discontinuity. Instead, a code based on BDF with the usual error
control mechanism is likely to fail not on the step which spans the discontinuity but on the subsequent
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step. It is easily seen that these difficulties with the error estimate are not limited to problems whose
solutions are discontinuous (see Petzold, 1982).

Other methods of solving DAE’s are the so-called Runge-Kutta methods. The (semi-) implicit forms
of these methods were originally developed for solving (very) stiff ODE systems. Efficient semi- or
fully-implicit Runge-Kutta methods use one Jacobian evaluation and LU decomposition per step and
solve one or more subsequent systems of linear equations.

The first publication on solving sets of differential algebraic equations (DAE’s) was by Gear (1971), who
solved them using adapted codes for solving ordinary differential equations (ODE’s). His results were
put into the code ODEPACK (Hindmarsh, 1983). Michelsen (1976) proposed a new implicit Runge-
Kutta method; a Semi-Implicit Runge-Kutta (SIRK) method which was used by Holland and Liapis
(1983) for dynamic column simulations. Petzold (1982) was the first to systematically describe and
classify difficulties with DAE’s according to the differential index of the system. This index equals the
number of times the algebraic equations need to be differentiated (with respect to time) to obtain a set of
only differential equations (thus, an ODE system is a DAE with index 0). The solution with higher index
systems was analyzed for linear multistep methods such as the backward difference formulas (BDF).
These methods are used in codes such as DASSL (Petzold, 1983) and LSODI (Hindmarsh, 1981).

For process systems Pantelides (1988) developed a structural approach for higher index problems and
calculation of initial conditions. These concepts have been incorporated into the SPEEDUP dynamic
simulator (Pantelides et al., 1988). Some index two systems are solved by DASSL through modified
error criteria to allow for more efficient stepsize algorithms. To handle index one problems that arise in
process problems, Holl et al. (1988) developed the DIVA dynamic simulator. Finally, Bachmann et al.
(1989) developed proper reformulation techniques and discussed numerical difficulties that arise if DAE
systems are reformulated incorrectly. For simultaneous solution of Differential Algebraic Optimization
Problems (DAOP), however, only self-starting methods (such as Runge-Kutta) can be considered. Pet-
zold (1986) showed that some Runge-Kutta methods can suffer order reduction for index one problems.
Brenan and Petzold (1987) extended this approach to consider the order, stability and convergence of
Implicit Runge-Kutta (IRK) applied to higher index DAE systems. Burrage and Petzold (1988) further
refined the convergence and stability properties of index one systems solved by IRK methods. Along
with Brenan and Petzold (1987), they showed that orthogonal collocation on finite elements, an A-stable
IRK method, is sufficiently stable and quite accurate for index one problems. Biegler gives a discussion
on solving DAE’s and DAOP. Roche (1989) applied the IRK methods for solving DAE systems as was
done before with SIRK methods (Holland, 1983).

Disadvantages of BDF methods (in comparison with Runge-Kutta methods) are that they are not self
starting (previous solutions are required), some iteration is required (with the inevitable chance of con-
vergence failure), the code is more complicated, and the stepsize is not as simple to compute as it is for
the Runge-Kutta methods. However, the advantages, such as a simple truncation error estimation, and
a reduced number of function (and derivative) evaluations required per step (compared to RK methods)
made the BDF methods more popular over the RK methods. However, for higher index problems or
problems with discontinuities, only the RK methods are successful as most BDF codes will usually fail
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(Gear and Petzold, 1984). It may also not be trivial to obtain initial values for all of the components
of � and ��. As initialization is a problem for solving dynamic column simulations, together with the
possible discontinuity problems caused by property routines, Runge-Kutta methods were selected in this
work for integration. Order reductions for the RK methods have been found (Petzold, 1986) and care
must be taken to avoid these situations. As mentioned earlier, general problems solving DAE systems
are the error estimate problem and discontinuities. Furthermore, is it very important that sparsity is
utilized for Jacobian calculations, since these tend to be computer time consuming.

The approach used here (referred to as BESIRK, see Appendix D) consists of a semi-implicit Runge-
Kutta method developed originally by Michelsen (1976) but which is extended with an extrapolation
technique (Bulirsch and Stoer, 1966) to improve the efficiency in solving DAE problems. This is sim-
ilar to methods by Bader and Deuflhard (1983) and Deuflhard et al. (1987) as described in Hairer
(1991,1994). One of the limitations of the BESIRK implementation is the fact that the differential terms
must have constant coefficients. It is for this reason that molar holdups are used as model variables
instead of molar compositions. The differential-algebraic system is rewritten in the form:

��� � ������ (4.83)

where � is a matrix of constant coefficients with a empty row for each algebraic equation. This also
facilitates solving the steady-state problem since then the left hand side becomes the null vector and the
Newton’s method can use the same function vector � .

The models are set up in a specific manner so that we can easily switch between solving steady-state
and dynamic problems. This allows us to use the dynamic model as a relaxation method for solving
steady-state problems (cf. Gani and Cameron, 1989). A dynamic simulation starts with a steady-state
simulation using Newton’s method. Special care must be taken for the Newton iterations to limit changes
in specific variables (for example in preventing holdups to become negative). If the design mode was
enabled, a second steady-state simulation is done upon convergence, but with a rationalized design. The
results are saved and a perturbation is read from the input file. The dynamic simulation starts with all
the variables initialized with the steady-state values. Certain perturbations restrict changes in some of
the model variables in order to maintain the integrity of the DAE system (the algebraic equations must
be satisfied, within tolerance). BESIRK is started and the system is integrated until the time of the
following perturbance is reached, or, the variables do not change by more than a predefined fraction
(here, ����). If a new perturbation is present the dynamic simulation restarts at that time, otherwise a
switch to the steady-state simulation is initiated after which the simulation terminates.

The system of model equations is sparse since each stage is usually only connected with the stage below
and the stage above. To exploit this sparsity of the problem and to solve it efficiently we use the NSPIV
sparse solver (Sherman, 1978). NSPIV does not save LU factors and cannot exploit the fact that multiple
linear systems with the same matrix need to be solved. However, solving the sparse linear systems is
isolated in one routine to easily switch to other sparse solvers.

To employ a BDF or (semi) implicit Runge-Kutta method we need the Jacobian of the right hand side of
all the equations. This information is computed from analytical expressions with the exception of the en-
thalpies, heat transfer coefficients (4.19, 4.20), rate equations (4.25, 4.26), holdup equations (4.29-4.32),
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and pressure drop derivatives (4.28). Obtaining an “analytical” Jacobian can be cumbersome but with a
numerically computed Jacobian (by finite differencing) the integration becomes rather slow (even when
exploiting the sparsity of the system). Furthermore, the accuracy of the Jacobian can be very important
for SIRK methods and in finding the exact location of discontinuities. BESIRK updates the Jacobian for
each integration but retains a copy of the Jacobian to use for each consecutive approximation in order to
save Jacobian evaluations (see Appendix D).

The program keeps track of the index of the system of equations. This index indicates the number of
times the algebraic constraints have to be differentiated with respect to the independent variable (time)
to produce a system of only ordinary differential equations. Higher index problems are usually more
difficult to solve. BESIRK signals a warning message when the index is higher than one (BESIRK tests
if one of the derivatives �� #
�
 is zero. If so, it tries to find substitutions from other algebraic equations
that would make the derivative nonzero. If this is not possible the index is considered higher than one
and Jacobian information is used to obtain an estimate of the index). BESIRK is successfull in solving
some systems of higher index.

Implementation of the model is done in a modular manner to allow for easy extension or modification
of the equations. Each type of stage (condenser, tray, reboiler) has routines for:

1. Setting indices for variables and equations

2. Returning variable and equations identifiers

3. Initialization of variables (from the initial guess)

4. Obtaining results from variable vector

5. Setting matrix entries for the differential terms

6. Steady-state simulation variable updating

7. To return leaving stream variables with their indices

8. Function and Jacobian evaluations

9. Numerical evaluation of specific parts of the Jacobian

10. Adapting variables for perturbations

In addition there are routines for coordinating the exchange of stream information between stages. Only
these routines, together with the main routine for function value evaluation need to be aware of all the
different types of stages. This modular (or ”object-oriented”) approach allows addition of different types
of stages without requiring changes to the existing code.

In the dynamic simulator the condenser and reboiler have design routines similar to the trays. They de-
sign the molar holdup in the condenser and reboiler to equal 5 minutes of steady-state in-flow. Therefore,
the size of the condenser and/or reboiler does not need to be specified.



72 Chapter 4: Dynamic Model Development

In both steady-state and dynamic simulation the problem is solved as one system of equations as is done
in equation oriented flowsheet solvers. Each routine only calculates stage sub-vectors of the variable
vector and sub-matrices of the Jacobian. The sub-matrices are copied into the complete Jacobian matrix,
which is stored as a sparse matrix.

At each report step during the integration the complete variable vector is copied to disk for later retrieval.
Thus, a simulation which is stopped can also be continued from the simulation time at which it was
interrupted. Routines returning the variable (and equation) identifiers facilitate in the reporting of the
simulation as well as in providing debug facilities.

Symbol list

� Interfacial area (��)
2 Area (��)
D Bottoms flow rate (���	
�)
� Concentration (���	
��)

Number of components
) Distillate flow rate (���	
�)
" Energy holdup (�
���	)
� Feed flow rate (���	
�)
� Interlinking flow rate (���	
�)
& Liquid height (�),

Heat transfer coefficient (5
��
/)
# Enthalpy (�
���	)
� Binary mass transfer coefficient (���	
��
�)
/ Equilibrium constant = 

�

� Liquid flow rate (���	
�)
� Molecular weight (�6
���	)
� Mass transfer rate (���	
�)
� Number of stages
, Pressure (��)
$ Heat input (�
�)
� Sidestream flow ratio
� Mass transfer rate matrix defined by (2.13,2.14),

Reflux flow rate (���	
�)
�� Reflux Ratio � �
)

' Temperature (/)
7 Molar holdup (���	)
� Vapor flow rate (���	
�)
B Weep flow ratio
� Liquid mole fraction
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 Vapor mole fraction

Greek:
� Fractional entrainment
� Fugacity coefficient
C Energy transfer rate (�
�)
 Activity coefficient

 Thermodynamic matrix defined by (2.12)
Æ�� Kronecker delta
�, Pressure drop (Pa)
� Murphree vapor efficiency

Superscript:
� Holdup above froth and downcomer
A Bubbling area plate
�	 Clear liquid
3 Holdup in downcomer,

Downcomer
3�-� Reflux drum
� Froth
; Interface
� Liquid
� Top
�� Tray spacing
� Vapor

SubScript:
A Bottom
� Condenser
� Component �
� Stage �
� Reboiler
�,%� specified
� Total
� from interlined stage �

Abbreviations:
DAE Differential-Algebraic-Equations
DS Dynamic Simulation/State
SS Steady-State
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Chapter 5

Simulation Results

This chapter contains simulation results with the previously discussed dynamic models. Nonequilibrium
model results indicate that the equilibrium model should not be used for the dynamic simulation. It
cannot predict the changes in individual component efficiencies of nonideal separations, neither predict
the changes in separation accompanied with operation close to flooding or below the weep point, nor
simulate columns where the vapor and liquid might differ in temperature.

Using multicomponent diffusion calculations influences the steady-state simulation results but they do
not affect the dynamic behavior of columns. This is in contrast to the use of different mass transfer
coefficient correlations which have differing dynamic characteristics. Dynamic studies might actually
be used to provide insight in the fundamental basis of the mass transfer coefficient correlations as well
as that for interfacial areas.

Tray layout parameters may have a profound effect on the dynamic performance of the column. The
effects of different tray design parameters on the mass transfer can only be modeled with a nonequi-
librium model. Equilibrium model simulations can only take tray hydrodynamics into account, but the
influence of the hydrodynamics on the tray performance is not accounted for.

Attempts to reduce the computer time by neglecting certain derivative information is shown to be
counter-productive.

5.1 Steady-State Simulations

It is important to recognize that steady-state results for the dynamic nonequilibrium model described
in the previous chapter are the same as the those from the steady-state implementation by Taylor et al.
(1994) of Chapter 2, even though the model equations differ in form and number. This served as a check
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Table 5.1: BTX Distillation Column Specifications

Steady-State � � �� � � ����

Feed (��	
�):
benzene 40 40 30
toluene 40 40 30
p-xylene 20 20 15
Reflux ratio 3 3 4
Reboil ratio 3 4 4

for the correctness of the new model equations. Steady-state results can be obtained by solving the
dynamic model using Newton’s method and setting the derivative terms to zero or by finding the final
state of a dynamic simulation when none of the variables is changing.

Since the dynamic model uses full Jacobian evaluations with respect to all of the variables – in contrast
to the steady-state implementation which only used composition derivatives of the rate equations –
convergence usually improved in terms of number of iterations. However, more time per iteration is
required for the evaluation of the Jacobian (due to the numerical evaluation of parts of the Jacobian
and the increased number of variables). The use of holdups as variables also complicates finding the
steady-state solution somewhat since the sum of the component holdups and the total holdup have to be
equal. In the case where the initial guess is not very good this might cause problems and the changes in
the holdups must be constrained.

The results of the two different dynamic equilibrium models (EQL and EQLV) are very similar, as the
holdup of the vapor in the froth usually is small compared to that of the liquid (the differences show at
higher pressures). Therefore, we have only included simulations of the EQLV model in order to use the
same number and type of holdups when comparing the equilibrium and the nonequilibrium model.

5.2 Design mode

To illustrate the combination of a steady-state column design and a dynamic simulation with multiple
perturbations a 28 valve tray column separating benzene, toluene and p-xylene is simulated. The feed is
introduced at the middle of the column. UNIFAC and Antoine correlations were used to model the liquid
thermodynamics and the Peng-Robinson equation of state for the vapor, including the excess enthalpies.
Table 5.1 lists the steady-state feed flows, boilup ratio, and reflux ratios used to design the valve tray
column. The column is initially perturbed by a change in the reboiler boilup ratio and after ten minutes
by an increment of the reflux ratio in combination with a decrease of the total feedflow (to prevent the
column from flooding). No difficulties were encountered with the integration of this example.

The column condenser operated at 1.2 A��, and the pressure drop in the column was calculated. The
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feed pressure was 1.4 A�� and the compositions were kept constant. The only mass transfer coefficient
model available for valve trays is the AIChE model. The steady-state simulator automatically sized the
column stripping and rectification sections as well as the total condenser and the partial reboiler. The
column tray design was based on a fraction of flooding of 75%, resulting in a two pass 2.3 � column in
the rectification section and a three pass 2.7 � column in the rectification section (with flowpath lengths
of about 1 �).
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Figure 5.1: BTX distillation column internal liquid flows (���	
�) as function of time (�) after increas-
ing the boilup ratio. Flows in the rectification section (solid lines) use the left axis and the flows in the
stripping section (dashed lines) use the right axis.
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Internal liquid flows from the initial disturbance are plotted in Figure 5.1. The liquid flow profiles have
been split into two parts, since the feed is a saturated liquid resulting in higher liquid flow rates in the
stripping section of the column. The sudden increase of boilup ratio causes an increase in the vapor flow
leaving the reboiler. This disturbance reaches the condenser very quickly as the vapor residence time
on the trays is very short. Because the reflux ratio is fixed, the liquid reflux flow starts to increase. The
residence time of the liquid on the trays is much higher and it takes about a minute for the increased
liquid flows to reach the reboiler where it causes a new increase in the reboiled vapor flow. This, in turn,
causes another increase in the vapor condensed in the condenser and refluxed to the column. But by that
time, the perturbation has become smoother and after some time it disappears.

After 10 minutes the reflux ratio is increased and the total feed flow is reduced at the same time. Initially,
this causes the refluxed liquid from the condenser to increase immediately and in turn the liquid flows
in the rectification section. Because the feed is a saturated liquid the decrease of the total feed flow
decreases the liquid flows in the stripping section. These changes work their way down the column. At
the time the reboiler receives less liquid the vapor flows decrease as well. The vapor flow change reaches
the condenser very quickly and the refluxed liquid flow rate starts to decrease as well. It continues to
decrease until the increased liquid flow created by the initial reflux ratio change reaches the bottom of
the column and gets vaporized. The result is several oscillations in the internal liquid and vapor flows
which die out quickly.

5.3 Equilibrium Versus Nonequilibrium

Here we explore the differences between the dynamic results of equilibrium models and those of
nonequilibrium models. Three examples have been simulated, an extractive distillation column, an
acetone absorber, and a debutanizer adapted from Gani (1986). For comparison purposes the EQLV
equilibrium model and the NEQ2H nonequilibrium models were used unless stated otherwise.

5.3.1 Extractive Distillation

Our first example is an extractive distillation column which separates n-heptane and toluene using phenol
as extractive agent. Temperature sensors often are used to control this kind of extractive distillation
column. Thus, we are interested in the differences in temperature profiles between equilibrium and
nonequilibrium simulations of this type of column.

The simulated column has 29 sieve plates, a partial reboiler, and a total condenser. The column has a
50/50 mol% feed of toluene and n-heptane at stage 20 (counting from the top, including the condenser as
the first stage) and a phenol feed at stage 10 which is three and a half times larger than our original feed.
The phenol makes the n-heptane more volatile than the toluene and the distillate purity is about 98.5
mole%. The tray design was automatically generated by the nonequilibrium model (based on a design
criterion of 75% fraction of flooding). The same sieve tray design was taken for all the simulations to
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Figure 5.2: BTX distillation column internal liquid flows (���	
�) after increasing the reflux ratio and
decreasing the feed flow simultaneously. Flows in the rectification section (solid lines) use the right axis
and the flows in the stripping section (dashed lines) use the left axis.

compare the results for the various models. The AIChE model was used for calculation of the mass
transfer coefficients. The condenser and reboiler holdup were set to account for a liquid holdup of about
5 minutes (at a reflux ratio of 5). See Table 5.2 for a summary of the specifications.

To compare the two types of simulation it is necessary to use a Murphree tray efficiency for the equilib-
rium model which is a back-calculated average from the nonequilibrium simulation. This is needed to



82 Chapter 5: Simulation Results

Table 5.2: Extractive Distillation Column Specifications

DECHEMA K model
UNIQUAC model (parameters by UNIFAC)
Antoine Vapor pressure
Excess Enthalpy
Condenser pressure 2.0 (A��)
Top pressure 2.0 (A��)
Estimated pressure drop
Feed stage 10 20
Vapor fraction 0
Temperature (�*) 170
Component flows (��	
�)
n-heptane 0 25
toluene 0 25
phenol 175 0
Total Condenser (stage 1):
Reflux ratio = 5.0
Molar holdup = 45.0 (���	)
Partial Reboiler (stage 31):
Bottom product flow rate = 200.0 (��	
�)
Molar holdup = 90.0 (���	)
Section 1 2 3
First stage 2 10 20
Last stage 9 19 30
Column diameter (�) 2.57 2.09 2.17
Total tray area (��) 5.19 3.43 3.70
Number of flow passes 3 2 2
Tray spacing (m) 0.5 0.5 0.5
Liquid flow path length (�) 0.717 0.778 0.753
Active area (% total) 86.8 82.0 77.8
Total hole area (% active) 12.1 9.8 9.6
Downcomer area (% total) 6.6 9.0 11.1
Hole diameter (�) 0.00476 0.00476 0.00476
Hole pitch (�) 0.0130 0.0144 0.0144
Weir length (�) 6.23 3.56 3.67
Weir height (�) 0.0508 0.0508 0.0508
Downcomer clearance (�) 0.0381 0.0381 0.0381
Deck thickness (�) 0.00254 0.00254 0.00254
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Figure 5.3: Extractive Distillation Column Configuration

obtain an equilibrium simulation with the same number of trays, and therefore, a comparable dynamic
behavior. An equilibrium model with constant Murphree efficiency of 55 % for all the components gave
similar products as those obtained in a nonequilibrium simulation.

The computed steady-state component Murphree efficiencies are shown in Figure 5.4. Notice that the
component efficiencies are generally unequal and can vary outside the range from zero to one. Here, the
efficiencies change radically and are very different from their average value, especially around the phe-
nol feed. This is due to the fact that the phenol feed is subcooled (by about �� �*) for better separation,
but it is still hotter than the internal flows at the feed tray. Therefore, the nonequilibrium model has a
higher liquid temperature on the feed tray than the equilibrium model due to limited heat transfer with
the vapor. This phenomena cannot be seen with the equilibrium model which assumes unlimited heat
transfer.

The column was perturbed by decreasing the phenol feed temperature from ��� � to ����*. Computed
Murphree efficiencies of the steady-state after this perturbance are show in Figure 5.5. Note the dif-
ferences with Figure 5.4. Since the efficiencies change over time the dynamic results computed with
constant efficiencies in the equilibrium model become an approximation to the actual dynamic behavior.

The changes in the temperature profiles as a function of time for the equilibrium and nonequilibrium
model are shown in Figure 5.6. There we can observe that the difference between the lines of the equi-
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Figure 5.4: Murphree efficiencies backcalculated from nonequilibrium simulation for the extractive
distillation of n-heptane and toluene with phenol.

librium model (dashed) and the nonequilibrium model (solid) can vary in a nonlinear fashion with time.
This implies that the dynamic response for the temperatures on these plates is quantitatively and quali-
tatively different, with obvious implications for any control strategies derived from the simulations. The
temperatures for the nonequilibrium model seem to fluctuate much less than those for the equilibrium
model since mass and heat transfer limitations dampen the changes quicker. The fluctuations are due
to the sudden increase in a cooler liquid flow going down the column, which will result in extra vapor
being condensed below the phenol feed. When this extra liquid reaches the reboiler the vapor flow
quickly rises (because the bottoms flow is constant) and so the internal liquid flow decreases. The vapor
is condensed and partially returned to the column (since a reflux ratio was specified, and the condenser
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Figure 5.5: Murphree efficiencies backcalculated from nonequilibrium simulation for the extractive
distillation after a drop in phenol feed temperature.

holdup is constant). This will send another wave of increased liquid flow down the column, but one that
is smaller than the original one.

The liquid and vapor flows have been plotted as a function of time in Figures 5.7 and 5.8, respectively.
Of course, with variable condenser and reboiler holdups the oscillations in the internal flows would be
less pronounced or suppressed. But the initial wave of liquid down the column from the feed flow causes
a nonlinear response which is quite different for both the models.
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Figure 5.6: Temperatures (K) of trays 10 through 30 and the reboiler for the extractive distillation
column as a function of time.

5.3.2 Acetone Absorber

The second example consists of a 30 sieve tray absorber in which acetone is to be absorbed in water from
a vapor stream (specifications are given in Table 5.3). The column is perturbed by increasing the vapor
feed temperature from �� to ����*. The column was simulated first with the nonequilibrium model
(using the AIChE model for mass transfer coefficients) in design mode to obtain a suitable sieve-tray
design and a back-calculated average Murphree efficiency (of 0.34) for the equilibrium simulation.

Initially the nonequilibrium model temperature profile (Figure 5.9) shows the typical bulge (of 2 to 3 �*)
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Table 5.3: Acetone Absorber Specifications

DECHEMA K model
NRTL Activity coefficient
Antoine Vapor pressure
Excess Enthalpy
Top pressure 1.01325 (A��)
Estimated pressure drop
Feed stage 1 30
Pressure (���) 1.0 1.0
Temperature (�*) 24.9 25.0
Component flows (��	
�)
Nitrogen 0.0 10.0
Acetone 0.0 1.0
Water 40.0 0.0
First stage 1
Last stage 30
Column diameter (�) 0.42
Total tray area (��) 0.139
Number of flow passes 1
Tray spacing (�) 0.5
Liquid flow path length (�) 0.301
Active area (% total) 83.2
Total hole area (% active) 24.3
Downcomer area (% total) 8.4
Hole diameter (�) 0.00476
Hole pitch (�) 0.00907
Weir length (�) 0.373
Weir height (�) 0.0508
Downcomer clearance (�) 0.0381
Deck thickness (�) 0.00254
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Figure 5.7: Internal liquid flows for the extractive distillation column.

caused by the heat of absorption of acetone in water and the evaporation of water in the bottom. After
the vapor feed temperature increase the liquid temperatures in the column rise as well. The equilibrium
model initially predicts a very similar temperature bulge at about the same tray (Figure 5.10). However
after perturbation we see that the liquid temperature on the bottom tray quickly rises to a higher value
than any of the tray above it. This is due to the assumptions that the temperature of the leaving flows on a
tray have to be the same. Therefore, the model predicts that the vapor entering the bottom of the column,
which has a temperature much higher than that of the liquid, is cooled down to the temperature of the
liquid immediately. No heat transfer limitations are considered. The larger the difference in temperature
between the vapor entering and the liquid leaving the column, the less appropriate is the assumption of
thermal equilibrium between phases.
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Figure 5.8: Internal vapor flows for the extractive distillation column.

Figure 5.11 shows the effects of the vapor temperature change for the concentration of acetone in the
vapor leaving the column. Due to the lower temperatures in the column the change in acetone concen-
tration is much less for the equilibrium model than that for the nonequilibrium model. Note that the
response time is also different. Dynamic modeling of absorption columns like this can be important to
ensure that environmental constraints are met at times even during temporary changes in vapor flow,
temperature, and contamination levels. This can’t be modeled with an equilibrium model if heat trans-
fer plays an important role in the operation of the column. Furthermore, the nonequilibrium model has
greater potential for modeling columns with trace components since mass transfer effects have a large
influence on the efficiency of the trace components.
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Figure 5.9: Temperature profiles for the acetone absorber simulated with the equilibrium model.

5.3.3 Debutanizer

This third example is an industrial debutanizer taken from Gani et al. (1986); it is their only example
where sufficient tray design details and steady-state information are available to allow simulation with
a nonequilibrium model. The valve tray column is ���� meter in diameter and they used a constant
efficiency for all trays. The efficiencies, backcalculated from a steady-state nonequilibrium simulation,
vary from ���� to ���� for the rectifying section and range from ���� to ���� in the stripping section. This
compares very well with the average tray column efficiency of ��� reported by Gani et al. The column
was perturbed with a 5 % increase in reflux rate keeping the reboiler duty constant. The simulated
bottoms pressure corresponds very well with that reported by Gani (within ��� kPa). In Figure 5.12
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Figure 5.10: Temperature profiles for the acetone absorber simulated with the nonequilibrium model.

the liquid flows in the column are shown as a function of the time for both the nonequilibrium and the
equilibrium model (comparable to the model of Gani et al.). The increased liquid flow perturbation
moves down the column and passes the feed tray after about 3 minutes. From the tray profiles one can
observe how the perturbation in the liquid flow becomes smoother as it moves down the column. The
results of the two models are very similar in this case.
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Figure 5.11: Molefraction of acetone of absorber off-gas as a function of time for the equilibrium
(dashed line) and nonequilibrium (solid line) model.

5.4 Different Holdup Models

The different holdup models discussed in the previous chapter have different dynamic behavior. To
illustrate this we use a depropanizer example taken from Taylor et al. (1994). A depropanizer column
operates at a pressure of 15 A��, and shows the effects of the vapor holdups at high pressure. At
these pressures the vapor holdups on and above the froth may be considerable and have to be properly
modeled. Vapor holdup above the froth can be up to half as large as the combined liquid holdups on
the tray and in the downcomer. Vapor holdup in the froth tends to be less then a tenth of the total liquid
holdup and is less important. The downcomer liquid holdup varies with the size of the downcomer and
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Figure 5.12: Liquid flows in Debutanizer

can be up to 50% of the liquid holdup on the tray. For this column the bottom flow rate is specified and
the reflux ratio is increased from 2.5 to 4 at the start of the dynamic simulation. To check the effect of the
inclusion of the vapor holdup above the froth two nonequilibrium simulations have been run, one with
all the 4 holdups modeled separately and one with two holdups but with the downcomer liquid holdup
lumped into one with the liquid holdup on the tray. The mass transfer is not influenced by this lumping
(calculation of mass transfer coefficients and interfacial area are computed independent of the holdup).
Figure 5.13 shows the temperatures on three trays (12, 15, and 18) as a function of the time (the solid
lines are for the 4 holdup model). Note the logarithmic time scale. It is apparent that the inclusion of
the vapor holdup above the froth is significant as the transients converge slower towards the steady-state
values (as they should with more total holdup in the column). Naturally, this has consequences for the
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time constants of the column and controller parameters derived from open-loop simulations.
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Figure 5.13: Temperatures of trays 12, 15, and 18 in a depropanizer modeled by the nonequilibrium
model with 2 holdups (dashed lines) and the 4 holdup model (solid lines), after an increase in the reflux
ratio.

The effects on the n-butane concentration in the distillate and that of propane in the bottoms is shown
in Figure 5.14 and 5.15. The mole fractions are plotted for the equilibrium model without lumping
and with lumping the liquid in the downcomer as well as for the nonequilibrium model with two and
four holdups (with downcomer liquid lumping or constraining the vapor holdup above the froth, respec-
tively). For all holdup models the steady-state values are the same at the begin and end, and for models
with lumped holdups the mole fractions lag behind those of the non-lumped models. The figures also
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show quantitative differences in the transients of equilibrium and nonequilibrium models. In both cases
the equilibrium model predicted higher mole fractions for the impurities. Figure 5.15 shows that the
nonequilibrium transient of propane mole fraction in the bottoms of the two holdup model differs qual-
itatively from that of the four holdup model. For the two holdup model we see first an increase in the
mole fraction followed by a decrease to the new steady-state value, in contrast to the four model holdup
which decreases monotonically. The difference between the two models is that the four holdup model
does take into account the vapor holdup above the froth. Apparently, it is wrong to neglect to model
the vapor above the froth at high pressures, as in this case. Note that transient of the four holdup model
which constrains the vapor holdup above the froth to remain constant is quite different from the transient
of the model which allows it to vary. The nonequilibrium model takes longer to reach steady-state than
the equilibrium model, and the four holdup model takes longer than the two holdup model.

5.5 Mass Transfer Coefficients Models

In chapter 3 we saw that different Mass Transfer Coefficient (MTC) correlations can predict different
column performances. Here we investigate their effects on the column dynamics of a nonideal separation
with an example from Krishnamurthy and Taylor (1985), with the mixture methanol/i-propanol/water
(see Figure 5.16, and Table 5.4). The final steady-state solution is the same as in their paper, but it is
initiated from a steady-state with an i-Propanol feed mole fraction of 0.006 while the total feed flow is
kept constant.

The four mass transfer models of chapter 3 are used to simulate the side-draw column where the feed
flowrate of propanol is increased from 1 to 1.5 ���	
�. The results are shown in Figure 5.17 where the
propanol mole fraction on the 25th tray are plotted as unction of the time. Initial and final steady-state
concentrations are different for each model, as is to be expected. However, the dynamic behavior is
quite similar. Only the Chan-Fair model shows some difference in its transient.

5.6 Mass Transfer Sensitivity

Mass transfer coefficients and interfacial area’s are not (yet) very accurately known, which has led to
some criticism of the use of nonequilibrium models. To investigate the effects of variations in the mass
transfer coefficients and interfacial area, we multiply these with constants what can be varied. We look
at the effects on the transients of the mole fraction propanol on the 25th tray of the propanol side-draw
column using the Chan-Fair model. Naturally, the steady-state values change if we vary the constants.
To compare the results, we scale the change so that the initial and final values coincide.

In Figure 5.19a and b the interfacial area is decreased, respectively increased by 50%, and the transients
are correspondingly slower and faster. Similarly in Figure 5.20a/b both vapor and liquid mass transfer
coefficients are decreased/increased by 50%. In Figure 5.21a and b the vapor respectively liquid mass
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Table 5.4: Methanol/i-propanol/water Column Specifications

DECHEMA K model
UNIQUAC Q’
Antoine Vapor pressure
Excess Enthalpy
UNIQUAC parameters Aij Aji
Methanol-Isopropanol -49.38165 62.04005
Methanol-Water -102.9364 191.4061
Isopropanol-Water 431.6771 23.03152
Column pressure 1.0 (A��)

Initial New
Feed stage 13 13
Pressure (A��) 1.0 1.0
Vapor fraction 0.0 0.0
Component flows (��	
�)
Methanol 3.333 3.333
Isopropanol 0.05 1.667
Water 4.95 3.333
Total Condenser (stage 1):
Reflux ratio = 5.0
Molar holdup = 6.0 (���	)
Partial Reboiler (stage 31):
Reboil ratio = 5.0
Molar holdup = 6.696 (���	)
First stage 2
Last stage 29
Column diameter (�) 0.586
Total tray area (��) 0.27
Number of flow passes 1
Tray spacing (�) 0.55
Liquid flow path length (�) 0.467
Active area (% total) 88.9
Total hole area (% active) 19.1
Downcomer area (% total) 5.3
Hole diameter (�) 0.00476
Hole pitch (�) 0.0104
Weir length (�) 0.513
Weir height (�) 0.0508
Downcomer clearance (�) 0.0381
Deck thickness (�) 0.00254
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Figure 5.14: n-Butane composition in the distillate of the depropanizer. The equilibrium model predicts
high concentration transients: the EQLV model (solid line), and the EQLV model with lumped down-
comer liquid (dashed lines). The nonequilibrium model has low concentration transients: the NEQ2H
model (solid line), the NEQ2H model with the lumped downcomer liquid (dotted line), the NEQ4H
model (dashed line), and the NEQ4H model with constant vapor volume above the froth (thick dashed
line).

transfer coefficients are increased by 100%. Increasing the vapor mass transfer coefficients has more
influence than increasing the liquid MTC’s since the mass transfer resistance is higher in the vapor phase
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Figure 5.15: Propane composition in the bottoms of the depropanizer. The equilibrium model predicts
high concentration transients (and uses the left axis): the EQLV model (solid line), and the EQLV
model with lumped downcomer liquid (dashed lines). The nonequilibrium model has low concentration
transients (and uses the right axis): the NEQ2H model (solid line), the NEQ2H model with the lumped
downcomer liquid (dotted line), the NEQ4H model (dashed line), and the NEQ4H model with constant
vapor volume above the froth (thick dashed line).

for this example (which is usually the case).

It is clear that the mass transfer coefficients as well as the interfacial area have a large influence on the
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Figure 5.16: Methanol/i-propanol/water column configuration.

column dynamic transients. This means that through comparing experimental dynamic transients with
model simulations we can discriminate between different mass transfer coefficient correlations as well
as for correlations predicting the amount of interfacial area. Not only will initial and final steady-state
values be different but the transients will differ as well. Since there is a large variance in predictions of
the mass transfer coefficient correlations available from literature as was observed above and in chapter
3, we feel that more (fundamental) research is warranted.

5.7 Multicomponent and Effective Diffusivity

In chapter 3 the different steady-state column profiles were calculated by using the full matrix diffusivity
model and by the using effective diffusivity method. However, it is unclear whether there is also a
difference in the column dynamics. Here we use a nonideal example which comes from the production
of ethanol. Ethanol produced by fermentation results in a ethanol-water mixture which also contains
traces of other components. These traces must be removed to (very) low levels because of their smell.
Here we discuss the removal of propanol using a side drawoff. A complete separation cannot be obtained
since ethanol and water form an azeotrope. Therefore, the top product is close to the azeotrope (at about
a mole fraction of 0.89, depending on the pressure), whereas the bottom is almost pure water. The feed
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Figure 5.17: Dynamics of various mass transfer model for the methanol/i-propanol/water column.

also contains some 1-propanol, which has a higher boiling point than ethanol. Propanol forms an almost
ideal solution with ethanol. Thus, in the top of the column where we have predominantly ethanol, it
tends to go down. However, propanol in water is a quite volatile component, due to its high activity
coefficient in water ( � 
 ��). The result is that in the bottom of the column propanol is pushed up
and it will accumulate (over time) in the middle of the column. To prevent this build-up from causing
problems it must be removed with a side drawoff as shown in Figure 5.22 (for specifications see Table
5.5). Simulations were run in sieve tray design mode using the AIChE MTC-model. The perturbation
consisted of an increase in the n-propanol feed flow of 50%.

Figure 5.23 shows the i-propanol mole fraction as function of the time for the full and effective dif-
fusivity model. Although the two column profiles are different the column dynamics are very similar
and steady-state is reached at the same time for both models. This can be explained by the fact that
the two models predict different individual mass transfer rates but the total mass transfer rates are not
very different. Thus, only in the case where the total mass transfer rate is dominated by an individual
component mass transfer rates the two models would show different column dynamics.

The same column (using the designed sieve tray layout) was used to investigate the buildup of the n-
propanol in the column. The feed for the starting steady-state did not contain any n-propanol, just
ethanol and water. Then the feed of 1 ��	
� n-propanol was introduced. Column profiles are shown
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Table 5.5: Propanol Side-draw Column Specifications

DECHEMA K model
UNIFAC
Antoine Vapor pressure
Excess Enthalpy
Column pressure 1.0 (���)

Initial New
Feed stage 45 45
Pressure (���) 1.0 1.0
Vapor fraction 0.0 0.0
Component flows (��	
�)
n-Propanol 1.0 1.5
Ethanol 10.0 10.0
Water 89.0 89.0
Sidestream stage 35 35
Phase Liquid Liquid
Flow (mol/s) 5.0 5.0
Total Condenser (stage 1):
Reflux ratio = 4.0
Molar holdup = 4.2 (���	)
Partial Reboiler (stage 50):
Bottom product flow rate = 86.0 (��	
�)
Molar holdup = 25.8 (���	)
Section 1 2
First stage 2 45
Last stage 44 49
Column diameter (�) 0.967 0.824
Total tray area (��) 0.734 0.533
Number of flow passes 1 1
Tray spacing (�) 0.53 0.5
Liquid flow path length (�) 0.8 0.603
Active area (% total) 91.2 83.5
Total hole area (% active) 17.4 16.5
Downcomer area (% total) 4.17 8.0
Hole diameter (�) 0.00476 0.00476
Hole pitch (�) 0.0109 0.0112
Weir length (�) 0.836 0.738
Weir height (�) 0.0508 0.0508
Downcomer clearance (�) 0.0381 0.0381
Deck thickness (�) 0.00254 0.00254
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Figure 5.18: Dynamics of various mass transfer model for the methanol/i-propanol/water column.

Figure 5.24 for n-propanol, for both approaches. After scaling the mole fractions no differences in the
column dynamics between the two approaches are observed. We see that the n-propanol concentration
builds up in an hour or so. If the feed flow of n-propanol is much lower than 1 ��	
� compared to the
99 ��	
� ethanol and water, the time it takes for the column to reach steady-state can become quite
long indeed (a general problem with the removal of these traces).

The differences between the two approaches are important as the mole fraction values are different.
This is obvious from the concentration of n-propanol in the distillate where a difference of a factor
two can be observed between the effective and the full diffusivity approach. It can also be seen for the
methanol/i-propanol/water example of Krishnamurthy and Taylor (1985), where Figure 5.25 shows the
column profiles of i-propanol as function of the time for the two different approaches.

5.8 Tray Layout and Operation

Tray layout parameters influence the hydrodynamics of trays. This has a natural influence on the column
dynamics. For example a tray with a lower weir height has less holdup, and therefore faster dynamics.
Similarly a tray with multiple passes has a faster transients than the same tray which only has a single
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Figure 5.19: Propanol mole fraction transient on the 25th tray. The interfacial area is decreased (a, left)
or increased (b, right) by 50% (right axis. The normal transient is shown with a dotted line (left axis).

pass. But also the column operation changes the hydrodynamics. Close to the flooding point as well as
below the weep point the hydrodynamics will be different from those at normal operation. Therefore,
the tray hydrodynamics must be included in any dynamic column model.

However, the tray hydrodynamics have an influence on the tray performance as well. This is where the
difference between the equilibrium model and the nonequilibrium model becomes more apparent. The
equilibrium model has no (consistent) manner in which to account for the influence of the hydrodynam-
ics on tray performance in contrast to the nonequilibrium model where tray hydrodynamics is affecting
the mass transfer coefficients.

We used the methanol/i-propanol/water example where we simulated the column with single pass trays
and double pass sieve trays. Figure 5.26 shows the internal liquid flows for both the equilibrium (solid
lines) and the nonequilibrium (dotted lines) for the double pass column simulations. Initially, the internal
liquid flows initially increase and there are only small differences between both models. However, the
transient for the nonequilibrium model dampens off earlier but takes longer to reach the steady-state
values, compared to the those for the equilibrium model.

However, differences in internal flows translate into interesting results for the distillate mole fractions.
In Figure 5.27 the i-propanol mole fraction in the distillate is plotted as function of the time, for the two
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Figure 5.20: Propanol mole fraction transient on the 25th tray. The vapor and liquid mass transfer
coefficients are decreased (a, left) or increased (b, right) by 50% (right axis). The normal transient is
shown with a dotted line (left axis).

different models as well as for single and double pass trays. The dynamic behavior of the equilibrium
model is quite different from that of the nonequilibrium model. Since the equilibrium model uses the
same hydrodynamic routines the difference must be caused by the influence of the tray hydrodynamics
on the separation. Observe that there is little difference between the one and two pass equilibrium
simulations, but not so for the nonequilibrium simulation. The two pass column has a reduced liquid
residence time. Since the perturbance introduces an increase in the internal liquid flowrate, it reaches
the reboiler faster in a two pass tray column than in a single pass tray column. The different internal
flows influence the separation. The i-propanol mole fractions for the condenser and first 24 trays are
plotted in Figure 5.28.

Similar results may be obtained by varying other tray layout parameters. In Figure 5.29 the distillate
i-propanol mole fraction is plotted as a function of time. Dashed lines correspond to one inch weir
simulations where the solid lines use the (normal) two inch weir heights. As can be seen from the
figure, initial and final steady-state values are identical for the equilibrium model (the thin lines). The
distillate concentration in the simulation using weirs of one inch is changing first, but also takes a little
longer to converge. The dynamic transients are very similar. However, although the initial values for the
nonequilibrium model (the thick lines) are almost the same, the final values differ by more than 20%.
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Figure 5.21: Propanol mole fraction transient on the 25th tray. The vapor mass transfer coefficients are
increased by 100% (a, left) or the liquid mass transfer coefficients are increased by 100% (b, right),
using the right axis. The normal transient is shown with a dotted line (left axis).

The dynamic behavior is also different, implying an effect of the hydrodynamics on the mass transfer
which changed the transients. Other tray layout parameters, for example the free area ratio, have an
influence on the column dynamics as well.

The influence of the tray hydrodynamics are even more important at column operation outside the nor-
mal range, in other words close to column flooding or with liquid weeping through the holes of the trays.
We illustrate this with the methanol/i-propanol/water column using a different perturbation. Instead of
changing the feed composition we increase the reflux ratio of the condenser from 5 to 6. Initially the
trays operate at a fraction of flooding of around 75%, but after increasing the reflux ratio they operate at
90% and several trays in the top operate at 95% of flooding. Since the Chan-Fair was used to model this
column, the average efficiency decreases due to the increase of the fraction of flooding (see Appendix
A for the dependence of the mass transfer coefficients on the fraction of flooding). The transients for
the i-propanol in the distillate for the equilibrium and nonequilibrium model are plotted in Figure 5.30.
Besides the difference in the values for the i-propanol concentration in the distillate, the dynamic be-
havior is completely different. The equilibrium model predicts a decreased distillate concentration due
to the constant efficiency (of 60%) and higher reflux. However, the nonequilibrium model predicts
an increasing distillate concentration when the reflux is increased. Since it is impossible to predict
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Figure 5.22: Ethanol/water column with side-draw for the removal of propanol.

the decremental effect of the tray hydrodynamics on individual component efficiencies the equilibrium
model is unsuitable for this kind of dynamic simulations.

5.9 Neglecting Jacobian Terms

The evaluation of the numerical derivatives of the mass transfer rates with respect to all the variables
is quite expensive. It is possible to neglect the change in the physical properties (such as densities,
viscosities, etc.) during the finite differencing to obtain derivatives of the rate equations. Although
this decreased the time required for the Jacobian evaluation, stepsize control of the integrator limited
the stepsize to smaller steps to keep the errors within the specified tolerance. This resulted in actually
requiring more computer time in comparison to integration using the complete derivative information.
It shows that accurate Jacobians are required to obtain accurate dynamic results. Thus, it seems more
useful to spend time on obtaining analytical derivatives of the mass transfer rate equations (possibly with
the use of symbolic math packages) than on devising schemes which neglect or approximate Jacobian
terms.
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Figure 5.23: Mole fraction of n-propanol as function of the time using the full Maxwell-Stefan matrix
diffusivity approach (solid line, left axis) and the effective diffusivity approach (dotted line, right axis).
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Figure 5.27: Mole fraction of i-propanol in the distillate as function of the time for the equilibrium (thin
lines) and nonequilibrium (thick lines), using single pass sieve tray (solid lines) and double pass sieve
trays (dashed lines). The methanol/i-propanol/water column was simulated with the Chan-Fair model.
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for single (solid lines) and two pass (dotted lines) sieve trays.
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Figure 5.29: Distillate i-propanol mole fractions as function of the time simulated with the equilibrium
(thin lines) and the nonequilibrium model (thick lines) with two different weir heights; one inch (dashed
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Figure 5.30: Distillate i-propanol mole fractions as function of the time after increasing the reflux ratio
simulated with the equilibrium (thin lines, left axis) and the nonequilibrium model (thick lines, right
axis).



Chapter 6

Conclusions

A rigorous nonequilibrium model has been developed where each phase in the froth and disengagement
zone is considered as a separate, variable, completely mixed holdup and only mechanical equilibrium
is assumed (equal pressure over the tray). Mass transfer occurs between the vapor and liquid in the
dispersion on the tray. The nonequilibrium model includes tray sizing parameters and mass transfer
models and it is observed that these have a direct and significant influence on the column dynamics.
Thus, the nonequilibrium model has the potential to include tray sizing parameters as part of the column
design, control, and optimization. Without efficiencies the model is predictive, no estimates were needed
to describe the performance of an existing industrial column, just tray design layout and operational
specifications. Tray layout specifications are not required for a nonequilibrium simulation, they can be
generated by using the design-mode during a steady-state simulation.

Nonequilibrium simulations show that the (back-calculated) component Murphree tray efficiencies for
multicomponent systems are unequal and can become completely different given a small change in spec-
ifications. If the component efficiencies are unequal and they change with respect to specifications then
they cannot be used in dynamic column simulations since no model is available to rigorously compute
the efficiencies. The difference between equilibrium with a constant efficiency and nonequilibrium sim-
ulation transients can be pronounced, both qualitatively and quantitatively. These differences are due to
both mass and heat transfer limitations which the equilibrium model ignores. There are also significant
differences in dynamic behavior of columns at higher pressures simulated with models that include or
ignore the vapor holdup above the froth. In general, it also takes longer to reach a new steady-state for
the nonequilibrium column simulation compared to the equilibrium simulation.

Mass transfer models are developed that account for cross flow effects on large distillation trays while
avoiding the pitfalls that can strike while employing overall mass transfer coefficients in the calculation
of interphase mass transfer rates. New plug and dispersion flow models for the nonequilibrium column
model are proposed and found to predict tray efficiencies in general agreement with FRI experimental
data on large scale equipment. Several methods of evaluating binary mass transfer coefficients in dis-
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tillation have been evaluated. Of the methods tested, that of Chan and Fair (1984) provides the best
predictions of column performance.

Additional evidence that the Maxwell-Stefan equations should be used in the calculation of mass transfer
rates in distillation is provided by comparing the predictions of the nonequilibrium model with the new
flow and mass transfer models with a simpler model based on all components having an equal facility
for mass transfer. Column designs obtained with the simple model can be very different (in terms of
numbers of stages, optimal feed, sidestream and controller locations) from those obtained with the more
rigorous approach. However, there is little difference in the dynamic behavior of columns. This is
in contrast to the use of different mass transfer coefficient correlations which have differing dynamic
characteristics. Dynamic studies might provide insight on the fundamental basis of the mass transfer
coefficient correlations as well as that for interfacial areas.

Tray layout parameters may have a profound effect on the dynamic performance of the column. Effects
of different tray layout parameters on the mass transfer can only be modeled with a nonequilibrium
model. Equilibrium model simulations will show no difference in performance other than those affecting
the hydrodynamics of the tray layout. The free area ratio influences both the mass transfer and the
hydrodynamics on the tray and is one of the most important parameters.

Future work on the dynamic nonequilibrium column model must include the extension to packed columns,
which is rather simple if accurate and correctly behaving holdup correlations for structured and random
packings are available. Recent advances in modeling packed columns have given rise to models of a
more fundamental basis which also include the pressure drop over the packing.

As mentioned above, more fundamental research is needed to determine better methods to estimate
mass transfer coefficients in the vapor and liquid phase, as well as the total interfacial area available for
mass transfer. This remains an important area for improvement. Dynamic nonequilibrium simulations
of experimental data might actually help to discriminate between various models and provide the actual
relations between vapor and liquid resistances.

The influence of entrainment and weeping flows on the tray hydrodynamics and the mass transfer pa-
rameters is little understood, and not yet incorporated in a proper manner in the nonequilibrium model.
To do so will allow the nonequilibrium model simulation of columns that operate outside the normal
operation conditions. This is important for the simulation of the start-up and shut-down of column
processes.

More models for the condenser and reboiler should be developed, including equations that model con-
trol units normally utilized in column operations. These models can become much more advanced
and include the heat transfer process taking place or even the mass transfer process of condensing or
evaporation. Extension of the models will allow more specifications.

Another interesting subject is the dynamic interaction of multiple interlinked columns, simulated with
nonequilibrium models, for example those encountered in extractive distillation. Possibly dynamic
nonequilibrium liquid-liquid column simulations are possible by extending the current steady-state
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nonequilibrium implementation of this operations.

The design mode can be further enhanced by using an optimizing algorithm that would optimize the
tray layout for minimum cost or pressure drop, maximum flexibility or mass transfer, or a combination
of these.
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Appendix A. Correlations

To use the dynamic nonequilibrium column model we have to evaluate the liquid holdups on a tray, the
tray pressure drop, the binary mass transfer coefficients, and the interfacial area. Correlations for these
properties are discussed here.

Tray pressure drop estimation

The liquid heights on the trays are evaluated from the tray pressure drop calculations. The wet tray
pressure drop liquid height is calculated with:

&�� � &� � &� (A.1)

where &� is the dry tray pressure drop liquid height and & � the liquid height:

&� � &	� � &� �
&��
�

(A.2)

The clear liquid height, &	�, is calculated with

&	� � 8&� � &�� (A.3)

where the liquid fraction 8 is computed with the Barker and Self (1962) correlation:

8 �
����&� � ������� � ����$�
5� � �����

����&� � ������� � ����$�
5� � �����
(A.4)

The choice of correlation for the liquid fraction turns out to be important as certain correlations are
dynamicly unstable. The height of liquid over the weir, & ��, is computed by various correlations for
different types of weirs (see Perry) and a weir factor (��) correction (see Smith, pp. 487) is employed.
For example for a segmental weir:

&�� � �������

�
$�
5�

����

(A.5)
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B �
5�
)	

(A.6)

� �
� �

B�

�� ���B�
��	
$�
% ���

�

���� �
�
�� B���

(A.7)

where $� is the volumetric flow over the weir per weir length. The residual height, & �, is only taken
into account for sieve trays. Bennett’s method (see Lockett, pp. 81) is:

&� �

�
�

����+�

��
9

6

�����
+� � +�

3�

����

(A.8)

Dry tray pressure, &�, is calculated with:

&� � /
+&
+�

-�� (A.9)

/ �
�

�6
(A.10)

where the orrifice coefficient � for sieve trays is computed according to Stichlmair and Mersmann
(1978). For valve trays we use the method of Klein (1982) as described in Kister (1992, pp. 309-
312) where / is given for the cases with the valves closed or open. It is extended for double weight
valve trays as discussed by Lockett (1986, pp. 82-86). The dry tray pressure drop is corrected for liquid
fractional entrainment.

The froth density is computed with

&� �
&	�
8

(A.11)

The liquid gradient, &�� , is computed according to Fair (Lockett, 1986, pp. 72):

�� �
5&�

5 � �&�
(A.12)

7� �
$�
5&	�

(A.13)

�%� �
��7�+�

:�
(A.14)

� � � ���&��%
����	
� (A.15)

&�� �
@�7�

�

6��
(A.16)

where 5 is the average flow-path width for liquid flow, and @ the flow path length. The height of liquid
at the tray inlet is:

&� �



�

6

�
$�
5�

���
�

&	�
� �

&	

�
�

�8&��
�

(A.17)

where &	 is the height of the clearance under the downcomer. The pressure loss under downcomer
(expressed as a liquid height) is

&!�	 �

�
�

�6

��
$�

*�5�&	

��

(A.18)



121

where *� � ���� according to Koch design rules. The height of liquid in the downcomer can now be
calculated with the summation:

&�� � &�� � &� � &!�	 (A.19)

Bubble-cap liquid heights are done according to Perry’s (1984) and Smith (1963). Additionally the
liquid fraction of the froth is computed according to Kastanek (1970).

Entrainment is computed from the fractional liquid entrainment which is computed from Hunt’s corre-
lation and from figure 5.11 of Lockett (1986) for sieve trays:

�� � ���� ����
�
�����

9

�
��

�
7�

'� � ���&	�

����

(A.20)

Weeping flows are estimated from a correlation by Lockett and Banik (1984) where the weep-point
occurs at ��� � ����:

�� � ��������� � ���� (A.21)

where �� is the weep rate (��
�) per total hole area (��). The Froude hole number is determined from

��� � -�

�
+�

6+�&	�
(A.22)

However, the weeping and entrainment flows were not accounted for in the dynamic model.

Mass Transfer Coefficients

Binary mass transfer coefficients (MTC’s) can be computed from Number of Transfer Units (NTU’s =
N) by:

�� � N� 
�� �� (A.23)

�� � N�
���� (A.24)

where the vapor and liquid areas are calculated with

�� � ��
C&� (A.25)

�� � ��
8&� (A.26)

AIChE (1958)

N� � ������ � ����&� � ������� � �����$�
5��

�
0�� (A.27)

�� � -�

�
+�� (A.28)
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0�� � E� 
+�� )
� (A.29)

N� � �����
�
)������� � ������� (A.30)

�� � &�@5�
$� (A.31)

The clear liquid height &� is computed from Bennett et al. (1983):

&� � 8�
�
&� � *�$�
8�5��

��	�
�

(A.32)

8� � �����������-��+� 
�+� � +� ����������� (A.33)

* � ���� � ����� ����������&�� (A.34)

Chan-Fair (1984)

N� � ������� ������ ���
�
)� �� 


�
&� (A.35)

�� � ��� 8��&�
�8�-�� (A.36)

For the liquid number of transfer units the same correlations as given for the AIChE method is used (& �
and 8� are also computed with the correlation of Bennett et al.).

Zuiderweg (1982)

The vapour phase mass transfer coefficient is

�� � ����
+�� � �����
�+�� �
� (A.37)

in which �� becomes independent of the diffusion coefficient. The liquid mass transfer coefficient is
computed from either:

�� � ��� �����E������� (A.38)

or
�� � ������)������ (A.39)

Chen-Chuang (1993)

The numbers of transfer units for the vapour is:

�� �
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-�

(A.40)

�� � 7�
�
+� (A.41)
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and for the liquid

�� �
+�
+�

�� (A.43)
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Interfacial Area

The interfacial area is computed according to Zuiderweg (1982) in the spray regime from:

��&� �
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� +
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�����

(A.45)

or in the froth-emulsion regime:

��&� �
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����

�
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�
� &���

9

�����

(A.46)

The transition from the spray to mixed froth-emulsion flow depends on the flow parameter (�� ):

�� . �A&� (A.47)

where A is the weir length per unit bubbling area:

A � 5�
2� (A.48)

and the clear liquid height is given by:

&� � ���&���� �,��
A����� (A.49)

The total interfacial area on a tray can be calculated with

�
 � ����!� (A.50)
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Appendix B. Flow model derivation

The derivations for the various flow models was done with the help of the symbolic math program
MAPLE. The plug flow model calculation of the average composition is:

# Plug-flow model
restart;
d:=diff(X(z),z)=B*X(z);
ds:=dsolve({d,X(1)=Xout},X(z));
X(z):=rhs(ds);
Xbar:=int(X(z),z=0..1);
Xbar:=factor(Xbar);

The calculation of the average composition for the dispersion flow model is similar, except that the result
of Maple is not easy to use. Therefore, we simplified the answer by hand and check equivalence:

# dispersion-flow model
restart;
d:=A*diff(X(z),z,z)-diff(X(z),z)-B*X(z);
e1:=A=1/(2*a);
e2:=B=(bˆ2/a-a)/2;
d:=subs(e1,e2,d);
ds:=dsolve({d,D(X)(1)=0,X(1)=Xout},X(z));
ds:=subs(a+b=p,a-b=m,ds);
X(z):=rhs(ds);
Xbar:=int(X(z),z=0..1);
# Find a better formula and check
Xb:=Xout/(2*b) * (p*Omegam-m*Omegap);
assign(Omegam,(exp(m)-1)/(exp(m)*m));
assign(Omegap,(exp(p)-1)/(exp(p)*p));
simplify(Xbar-Xb);
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Appendix C. Flow and Mass Transfer
models

Murphree efficiencies as a function of the fraction of flooding for eight data sets were obtained from
FRI reports by Yanagi and Sakata (1979, 1981, 1982). Two systems were used in the FRI tests: the
cyclohexane (cC6) - �-heptane (nC7) system at pressures of 28, 34, and 165 ���, and the �-butane
(iC4) - �-butane (nC4) system at pressures of 1138, 2056, and 2756 ���. The experiments were carried
out on two types of sieve tray columns operated at total reflux; one with a free area ratio (total hole area
divided by total active area) of 8% and one of 14%.

In each of the following figures the back-calculated efficienceies are plotted as function of the fraction
of flooding, using the AIChE, Chan-Fair, Zuiderweg, and Chen-Chuang mass transfer coefficient cor-
relation, respectively. For each mass transfer coefficient correlation four flow model combinations with
increasing efficiency are plotted: Vapor mixed - Liquid mixed, Vapor plug flow - Liquid mixed, Vapor
plug flow - Liquid dispersion flow, and Vapor plug flow - Liquid plug flow. The last two models usually
result in similar efficiencies. The experimental FRI data are displayed with circles.
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Figure C.1: Experimental FRI data cC6-nC7 at 34 ���, 14% Sieve plate.
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Figure C.2: Experimental FRI data cC6-nC7 at 165 ���, 14% Sieve plate.
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Figure C.3: Experimental FRI data cC6-nC7 at 165 ���, 8% Sieve plate.
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Figure C.4: Experimental FRI data cC6-nC7 at 28 ���, 8% Sieve plate.
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Figure C.5: Experimental FRI data iC4-nC4 at 1138 ���, 14% Sieve plate.
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Figure C.6: Experimental FRI data iC4-nC4 at 1138 ���, 8% Sieve plate.
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Figure C.7: Experimental FRI data iC4-nC4 at 2068 ���, 8% Sieve plate.
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Figure C.8: Experimental FRI data iC4-nC4 at 2756 ���, 8% Sieve plate.
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Appendix D. BESIRK

Since solving systems of Differential-Algebraic Equations (DAE’s) with multi-step codes (Brenan and
Petzold, 1989) like DASSL requires initial derivative information and will have problems with dis-
continuities, our preference was to use a single-step method. Holland and Liapis (1983) solved the
system of differential-algebraic equations resulting from his dynamic distillation column model by us-
ing a generalized Semi-Implicit Runge-Kutta method of Michelsen (1976) combined with Richardson
extrapolation. The integration is computationally intensive.

To improve the method a Bulirsch-Stoer extrapolation approach was tested and shown to be more ef-
fective. The approach is similar to work by Bader and Deuflhard (1983) and Deuflhard et al. (1987)
as described in Hairer (1991, 1994). A variety of stiff ODE problems taken from the literature have
been solved and the results compared with DASSL and the Implicit Midpoint Rule method of Bader and
Deuflhard. BESIRK is shown to have the better overall performance for the given set of test problems.
The Fortran code solves differential-algebraic systems with constant differential coefficients.

The method requires more Jacobian evaluations than some other codes but it reduces execution times
on a set of ODE test problems by about 30 percent. Performance on DAE problems equals that of
multi-step codes. The algorithm is simple and compact, and may easily be tailored to the user’s needs
(to handle sparse systems, for example).

Algorithm

A system of DAE’s can be written as:

��� � ���� �� �� (D.51)

� � ���� �� �� (D.52)

where (1) and (2) are the differential and algebraic set of equations respectively. Both sets are dependent
on the differential variables, �, the algebraic variables, �, and the independent variable, �. � is the
coefficient matrix for all the differential terms. If the system (1,2) is written as

��� � ���� �� �� (D.53)
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C�� � ���� �� �� (D.54)

with C taken to approach zero, then the resulting ODEs can be solved by numerical integration methods
that can handle stiff problems. Such methods are (Semi/Diagonal) Implicit Runge-Kutta (S/D IRK)
methods or the Backward Differentiation Formulae (BDF) methods. There are many articles describing
implementations (see, for example Gear (1971a); Hindmarsh (LSODE, 1980); Prokopakis and Sei-
der (1981); Petzold (DASSL, 1983); Cameron (1983); Brenan et al. (1989); Cash and coworkers
(1989,1990,1992); and many others). Bader and Deuflhard (1983) presented a method based on the
Implicit Midpoint Rule (IMR) combined with a Bulirsch-Stoer (1966) extrapolation technique, Deufl-
hard (1983) discusses an implementation of this method. Deuflhard et al. (1987) developed the code
LIMEX which employs an implicit Euler method with extrapolation. Here a Bulirsch-Stoer (BS) ex-
trapolation technique is combined with a third order SIRK from Michelsen (1976).

To solve the system:
�� � ������ (D.55)

we can use Michelsen’s (1976) third order SIRK method:

���� � �� ���	� ���	� ���	� (D.56)

where 	�, 	�, and 	� are obtained by solving:

�
� &�������		� � &�������� (D.57)

�
� &�������		� � &���� � ��&��� � A�	�� (D.58)

�
� &�������		� � �A��	� � A��	�� (D.59)

with & being the step in the independent variable � and 
 the identity matrix. The Jacobian ��� �� is
defined by:

����� �
������

���
(D.60)

The numerical constants are:

�� � ������������������

A� � �
� �� � �������

A�� � ������������������� A�� � �������������������
�� � ����������������� �� � ������������������ �� � �

Precise values for these coefficients are important to maintain accuracy. The calculation of � ��� from
(5)-(9) requires only one matrix decomposition and three back-substitutions. This method has been
found to be one of the more efficient semi-implicit Runge-Kutta methods.

To solve the DAE system (1) and (2) with Michelsen’s method the system is written as:

��� � ������ (D.61)
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where � is a matrix with constant coefficients and � is the set of functions dependent on the variable
vector � and independent variable �. For algebraic equations the rows of � will be zero. Thus, (11) can
represent differential, algebraic, and differential algebraic equations. This makes it possible to easily
switch between different systems of equations. By partitioning the matrix � (using C) we can write:

�� � ��������� (D.62)

	� is obtained from:
�
� &���

�������		� � &����������� (D.63)

This can be rewritten as:
��� &�������		� � &�������� (D.64)

Similarly, we can obtain 	� and 	� as:

��� &�������		� � &���� ��&��� � A�	�� (D.65)

��� &�������		� � ��A��	� � A��	�� (D.66)

The nice properties of Michelsen’s algorithm have been retained; only one decomposition per iteration
is needed.

We use the Bulirsch-Stoer (BS) extrapolation method to integrate from � to ��# , with # being a ”big”
step. The ideas behind BS methods are clearly articulated by Press et al. (1992), Bader and Deuflhard
(1983) and Deuflhard (1983). Here we have adapted the original BS method to use the SIRK method
for the integration.

The integration from � to � � # is done several times while using � � (� � �� �� � � �) smaller steps
of size &� , where &� � #
�� . Every ��� integration the number of steps increases, and thus, & �
decreases. After each integration (except for � � �) we try to fit the values of ��� �#� as a function
of stepsize &�

� (with integer , depending on the order of the extrapolation method) and extrapolate to
obtain ��� �#� at &� � � (corresponding to taking an infinite number of steps). Current extrapolation
methods include polynomial extrapolation and rational extrapolation, the former being favored (Press et
al., 1992). The extrapolation conveniently provides both the solution and an estimate of the error. If the
error is not acceptable we integrate again using the next higher value of � � . When, after integrating �

times, the errors are within the integration tolerances we accept the step # . By estimating the number
of integrations for the next step, � ��, we can obtain the next step as # �� � # �����


��� .
The optimum value of � �� is denoted by F. Of course, the best F can be dependent on the required
tolerances and the local problem conditions. Furthermore, increments of � need to be limited to a
maximum increment, ��, in order to maintain stability (see Deuflhard, 1983).

If the error estimates obtained from the extrapolation are too large the stepsize # is reduced. This
prevents the extrapolation from becoming unbounded which can lead to (fatal) floating point errors. The
error estimates obtained from the extrapolation should decrease as � � increases. If the error estimates
increase then the previous approximations are probably incorrect due to too large a step in & � and #

should be reduced. Unbounded extrapolations or increasing error estimates rarely occurred in our test
computations but were adequately dealt with in this way.
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Normally �� � � is used throughout the integration. To improve the efficiency of the method � � � �

is used when � is constant during a step, and �� � � when � changes during a step. This method of
adjusting � works quite well as long as F is high. Furthermore, the new stepsize is limited to maximum
10 times the previous stepsize. The new stepsize is given by:

for: � 4 F � �� � � �� 4 F # �� � # �����
��
� 4 F � �� � � �� � F # �� � # �'��
��
� � F � � # �� � ���# 
� � F # �� � ���# 
� . F # �� � # �'��
��

with: # ��
# � ��

Step sequences ���	 that have been employed in BS methods are:

Bulirsch: � 2,4,6,8,12,16,24,32,48,64,96, . . .	
Bader and Deuflhard: � 2,6,10,14,22,34,50, . . .	

With either of these step sequences there will be certain points in between � and � �# where the right
hand side of (11) is evaluated more than once. To avoid this we used a sequence that consisted of prime
numbers:

� 1,2,3,5,7,11,17,23,31,47,61,89, . . .	

causing the right hand side of (11) to be evaluated only once at any point other than at � and at � �# .
We found that this improved the accuracy and stability of the method without effecting the efficiency.
Both polynomial and rational extrapolation were tested, where polynomial extrapolation performs 50 to
100% better.

Using a semi-implicit integration method requires Jacobian information. While integrating with small
steps of &� we have the option of updating the Jacobian at each step or to evaluate it only at the be-
ginning of each ”big” step (#) and to reuse it in each small step (to approximate the Jacobian with
Broyden’s method does not work here). Reusing the Jacobian dramatically reduces the amount of work
needed to evaluate Jacobians and to carry out matrix decompositions. However, reusing the Jacobian
can have negative consequences for the convergence and stability of the extrapolation method. Usu-
ally the stepsize # has to be reduced to maintain stability which results in performing more function
evaluations.

Both approaches of updating and reusing the Jacobian were tested on ODE problems taken from Enright
and Pryce (1987), test set A-F, and from Cash and Considine (1992), test sets G-I. Test set J consists of
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Table D.1: Results for the test problems with and without updating of the Jacobian. Absolute tolerances
of ���� are used and the initial step is ����.

Test Set Reused Jacobian Updated Jacobian
NF NJ time NF NJ time

A 1500 113 10.0 560 226 5.6
B 4803 199 19.6 1303 538 8.3
C 9251 291 29.9 1552 660 7.7
D 2120 164 5.9 800 324 3.1
E 1310 148 4.3 605 242 2.7

Total A-E 18984 915 69.6 4820 1990 27.5
F 15622 230 36.0 3103 1376 12.1
G 19588 445 81.4 4856 2180 31.0
H 4330 369 10.2 1535 614 4.9
I 30571 367 68.3 7910 3488 26.0

Total F-I 70111 1411 195.9 17404 7658 74.0
J 6084 100 20.8 908 386 8.3

Total 95179 2426 286.3 23132 10034 109.8

three index one DAE problems. The index one pendulum problem taken from Brenan et al. (1989), an
example from Gear (1971b) and the following simple (exponential) problem integrated from � � � � � � �

starting from 
���� � �:


�� � 
�

�
�


�
� (D.67)


�� � �
�� � �
��

�
� (D.68)

� � 
�
� � � (D.69)

The solution to this simple problem is �%�� %���� %���.

The integration is started with an initial stepsize of ���� for all problems (see Bader and Deuflhard,
1983). The equations and variables were unscaled and absolute tolerances were used. For all problems
except E4 and I3 the Jacobian was evaluated from analytical derivatives. The number of function and
Jacobian evaluations for each test set can be found in Table D.1. The reported execution time is the
computer time used on a 66MHz Intel 486 based PC while compiling with WATFOR77 (WATCOM,
1988). WATFOR77 executables tend to be much slower than those generated by other compilers and
they are not optimized.

When the Jacobian is reused the method fails on problem I4 (the time, NF, and NJ spent on I4 are not
included in Table D.1). The results in Table D.1 shows that updating the Jacobian is to be preferred,
especially for the more difficult test problems (sets F, G, and I).

The method described in this appendix has been implemented in a Fortran code we call BESIRK (for
Bulirsch Extrapolated Semi-Implicit Runge-Kutta). The user supplies routines that will calculate the
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function vector and Jacobian, checks the tolerances, updates the variable vector, and reports the vari-
ables. Standard versions of the tolerance check, update, and report routines are included. If required,
BESIRK can produce informative messages on each internal step. The user can opt for numerical Ja-
cobian evaluation (by simple forward differencing) which eliminates the burden of writing code for the
analytical Jacobian evaluation (a common source of errors). The code has no preset limits on the size of
the system. It requires the user to pass workspace arrays and a check whether these are properly sized is
carried out. The Fortran code is extensively commented and, we believe, relatively easy to understand
compared to multi-step codes like DASSL.

Comparison with other codes

To see how BESIRK performs relative to other codes we have also solved the test problems mentioned
in the previous section with DASSL and an implementation of the IMR from the book by Press et al.
(1992). The results are displayed in Table D.2. In order to obtain a proper comparison, we used absolute
error criteria for each method. The IMR method had problems solving D6, I2, and I4. The number of
evaluations and time spent on these problems by the IMR code are excluded from Table D.2. The totals
for the IMR code also do not include problem set J (DAE’s) since the IMR code was not designed for
such problems. The corrected totals in Table D.2 represent the totals after excluding the results for
problems D6, I2, I4, and set J in order to make a better comparison. Totals A-E represents the DE test
set of Enright and Pryce (1987). For this test the IMR had the lowest total time, BESIRK was about 25
percent slower, and DASSL is 2.6 times slower than the IMR code. Problems F-I are the more difficult
ones and BESIRK outperforms both DASSL and the IMR code by a factor of 1.2 and 1.75 respectively.
DASSL performs only slightly slower than BESIRK on the DAE systems (set J) although the number
of test problems is rather small.

The total calculation times will depend on whether one Jacobian evaluation is (much) more expensive
to compute than � function evaluations, where � is the number of variables. None of the test problems
had large � or computationally involved Jacobians. For sparse systems where the Jacobian evaluation
can be much faster than � function evaluations updating the Jacobian can have a significant advantage.
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