

ChemSep Tutorial: Simple (Multicomponent) Distillation

Harry Kooijman and Ross Taylor

In the material below we illustrate the use of *ChemSep* to solve a multicomponent distillation problem posed by J.D. Seader [Perry's Chemical Engineers Handbook, 7th Edition (1986)]. The results here differ only very slightly from those obtained by Seader (almost certainly due to differences in physical property models).

The specifications for this problem are summarized in the figure below.

The specifications made in this case are summarized in the table below:

Variable	Number	Value
Number of stages	1	11
Feed stage location	1	6
Component flows in feed	<i>c</i> = 5	5, 15,25,20,35 lbmol/h
Feed pressure	1	120 psia
Feed vapor fraction	1	0
Pressure on each stage including condenser and reboiler	<i>N</i> = 11	$P_j = 120 \text{psia}$
Heat duty on each stage except reboilers and condensers	<i>N</i> - 2 = 9	$Q_j = 0$
Vapor flow to condenser (replaces heat duty of reboiler)	1	V_2 = 175 lbmol/h
Distillate flow rate (replaces heat duty of condenser)	1	<i>D</i> = 48.9 lbmol/h
Total	31	

In addition, we have assumed that the pressure of the reflux divider is the same as the pressure of the condenser, the heat loss from the reflux divider is zero, and the reflux temperature is the boiling point of the condensed overhead vapor.

The entry of these specifications into *ChemSep* is shown in the screen images that follow.

Component Selection

🕂 ChemSep (TM) v6.75			
File Edit Solve Analysis	s Databanks Tools Help		
🗅 🖻 🖬 🕨 🍠 🔄	→ LUTE Ø DB B		
Image: Components ✓ Title ✓ Operation Image: Components ✓ Properties ✓ Feeds Image: Components ✓ Specifications ✓ Results Units Solve options Paths	Components Select Components Component databank: C:\Program Files\Cher	nSepL6v70\pcd\chemsep1.p omponent data - Copyright (c) Harry R Selected componer Component(s): Add Remove Substitute Remove All C Up Down Add New Pseudo's Show	Ats in simulation:
Changed Not converg	ed		

Operation

We select an *Equilibrium Column* and create a column configuration to match that above where we summarized the specifications.

Configuration	
Operation: Simple Distillation	\sim
Condenser: Total (Liquid product)	
Reboiler: Partial (Liquid product)	Top
Number of stages (e.g. 10)	
Feed stage(s) (e.g. 5,7) 6	Feed1 6
Sidestream stage(s) (e.g. 2,9)	
Pumparound(s) (e.g. 6>8, 9>1)	
	F Bottom

Properties

🗸 Thermodynamics	V Physical properties	Reactions
Select Thermodynami	ic Models	
<i></i>		Show enthalpy/exergy settings:
K-value	EOS	Show eninapy/exergy seconds.
Equation of state	Peng-Robinson 💌	
Activity coefficient	Y	
Vapour pressure	T	
Enthalpy	Peng-Robinson 💌	
	: Model Parameters (when req	wired
-		
Peng-Robinson	Peng-Robinson	T dependence
Reset	li-i	kii
Headt	Propane - Isobutane	-7.800E-03
🕞 Load	Propane - N-butane	0.00330000
3	Propane - Isopentane	0.0111000
Save	Propane - N-pentane	0.0267000
	Isobutane - N-butane	-4.000E-04
Correlation	Isobutane - Isopentane	x
	Isobutane - N-pentane	×
	N-butane - Isopentane	×
	N-butane - N-pentane	0.0174000
	Isopentane - N-pentane	0.0600000

The Peng-Robinson equation of state was selected to estimate K-values and enthalpy departures (as opposed to the De Priester charts by Seader who solved this problem using the Thiele-Geddes method).

It can be seen that we have loaded the binary interaction parameters from the library that comes with *ChemSep*. Missing parameters will be assumed to be zero. (This is probably a safe assumption in this example, but it will not always be wise to make this assumption and every effort should be made to find binary interaction parameters if they are not available in the library).

Feeds

Feed Stream(s) Specifications Insert Remove Molar flows Feed: 1 Name Feed1 Stage 6 Two-phase feed Split State p & V Pressure (psia) 120.000 Vapour fraction () 0.000000 Temperature (F) Flowrates (lbmol/h): Propane 5.00000 Isobutane 15.0000 Isopentane 20.0000	🗸 Feeds			
Feed: 1 Name Feed1 Stage 6 Two-phase feed Split State p & V Pressure (psia) 120,000 Vapour fraction () 0.000000 Temperature (F) Flowrates (lbmol/h): Propane 5.00000 Isobutane 15.0000 N-butane 25.0000	Feed Stream(s) Specifications		
Feed: 1 Name Feed1 Stage 6 Two-phase feed Split State p & V Pressure (psia) 120,000 Vapour fraction () 0.000000 Temperature (F) Flowrates (lbmol/h): Propane 5.00000 Isobutane 15.0000 N-butane 25.0000				
NameFeed1Stage6Two-phase feedSplitStatep & VPressure (psia)120.000Vapour fraction ()0.000000Temperature (F)Flowrates (lbmol/h):Propane5.00000Isobutane15.0000N-butane25.0000	Inser	t Rei	move	Molar flows 🛛 💌
NameFeed1Stage6Two-phase feedSplitStatep & VPressure (psia)120.000Vapour fraction ()0.000000Temperature (F)Flowrates (lbmol/h):Propane5.00000Isobutane15.0000N-butane25.0000			`	_
Stage6Two-phase feedSplitStatep & VPressure (psia)120.000Vapour fraction ()0.000000Temperature (F)Flowrates (lbmol/h):Propane5.00000Isobutane15.0000N-butane25.0000	Feed:		1	
Two-phase feed Split State p & V Pressure (psia) 120.000 Vapour fraction () 0.000000 Temperature (F) Flowrates (lbmol/h): Propane 5.00000 Isobutane 15.0000 N-butane 25.0000	Name		Feed1	
State p & V Pressure (psia) 120.000 Vapour fraction () 0.000000 Temperature (F) Flowrates (lbmol/h): Propane 5.00000 Isobutane 15.0000 N-butane 25.0000	Stage		6	
Pressure (psia) 120.000 Vapour fraction () 0.000000 Temperature (F)	Two-pha	se feed	Split	
Vapour fraction () 0.000000 Temperature (F)	State		p&V	
Temperature (F) Flowrates (lbmol/h): Propane 5.00000 Isobutane 15.0000 N-butane 25.0000	Pressure	(psia)	120.000	
Flowrates (lbmol/h):Propane5.00000Isobutane15.0000N-butane25.0000	Vapour fr	action ()	0.000000	
Propane 5.00000 Isobutane 15.0000 N-butane 25.0000	Tempera	ture (F)		
Isobutane 15.0000 N-butane 25.0000	Flowrates	s (Ibmol/h):		
N-butane 25.0000	Propane		5.00000	
	Isobutan	e	15.0000	
Isopentane 20.0000	N-butane		25.0000	
	Isopenta	ne	20.0000	
N-pentane 35.0000	N-pentar	e	35.0000	
Total flowrate 100.000	Total flov	vrate	100.000	

Pressures

The pressure is assumed constant throughout the column.

🗹 Analysis	🗹 Pressu	res 🔤	/ Heaters/C	oolers	🗸 Efficienci	ies
-Column Pres	sure Specific	ations -				
Condense	er pressure	120.0	000		(psia)	
Column p	ressure	Cons	tant pressure		•	
Top press	sure	120.0	000		(psia)	
Pressure	drop / stage	×			(psia)	
Bottom pr	essure	×			(psia)	

There are no heaters or coolers in this example so this panel is quickly completed (and, therefore, not shown). The stage efficiencies are assumed equal to their default value of 1.

Column Specifications

Seader specified the flow rate entering the condenser and the distillate flow rate. This combination is a little unusual in that both specifications involve flows around the top of the column. *ChemSep* normally expects one specification for the top and another specification for the bottom of the column. The specifications chosen by Seader allow us to easily calculate the bottoms product rate, and the reflux rate, and hence the reflux ratio. Thus, we could, in principle choose any combination of these five variables (as long as we don't choose two mutually exclusive specifications at the same time such as the distillate rate and the bottoms product rate). However, *ChemSep*can accept the specifications made by Seader and this is how we have chosen to complete the input for this example.

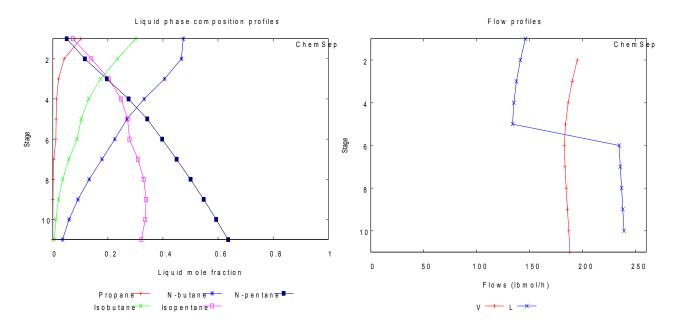
From the pull down specification menu we select the last option: *Flexible*. We may then choose to specify any variable in the column model (although we would be unwise to pick most of the possible choices). Here, following Seader, we pick the flow rate of vapor leaving stage 2 and the distillate flow rate. Note that when using the flexible specification option we may need to enter units as part of the specification equation.

🚹 ChemSep (TM) v6.75		_ 🗆 🗙
File Edit Solve Analysis	Databanks Tools Help	
🗋 🖻 🖬 🕨 🍣 🍋		
Title Components Operation Properties Thermodynamic: Physical properti Physical properti Feeds Specifications Analysis	✓ Analysis ✓ Pressures ✓ Heaters/Coolers ✓ Efficiencies ✓ Column specs Column Product Specifications Top product name Top Condenser duty name Qcondenser Top specification Flexible ▼ = V2=[175 lbmol/h] formula	•
Analysis Analysis	Bottom product name Bottom Reboiler duty name Qreboiler Bottom specification Flexible = D=[48.9 lbmol/h] formula	T
1	Product Guesses (optional) Use guesses for initalization Reset	
Changed Not converged	d d	

Solving the Simulation

With 11 stages and 5 components the equilibrium stage model has 143 equations to be solved for 143 variables (the unknown flow rates, temperatures, mole fractions). Convergence of the computer algorithm was obtained in just 5 iterations.

R	unForm				
	Init 15 mi Starting Newto	h al flow profiles al composition profiles illiseconds			A
	1		One		


Results

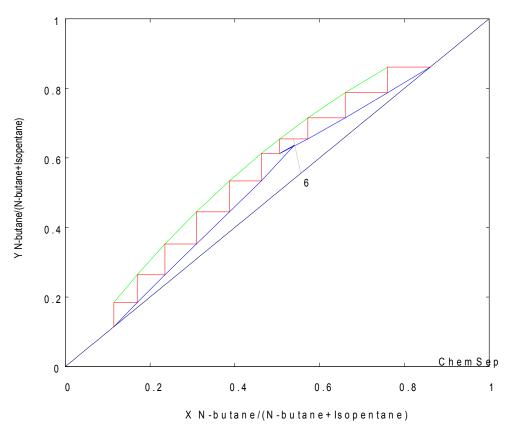
ChemSep can display an enormous amount of information. We refer readers to the sections on *Tables* and *Graphs* for more information; here we show some of the more useful results.

The stream table is shown below:

Tables Graphs McCabe-Thiele Rating					
Select table: Streams	•	×LS Edit	Сору	Font Print	
Stream	Feed1	Тор	Bottom		-
Stage Pressure (psia) Vapour fraction (-) Temperature (F) Enthalpy (Btu/lbmol) Entropy (Btu/lbmol/R)	6 120.000 0.000000 180.553 -6055.58 -9.69188	1 120.000 0.000000 144.332 -6637.92 -11.9235	11 120.000 0.000000 229.761 -4503.01 -7.85208		
Mole flows (lbmol/h) Propane Isobutane N-butane Isopentane N-pentane	5.00000 15.0000 25.0000 20.0000 35.0000	4.99726 14.6999 23.1726 3.56452 2.46576	0.300158 1.82739		
Total molar flow	100.000	48.9000	51.1001		

The composition and flow profiles is obtained by clicking on the appropriate icons on the button bar.

A McCabe-Thiele diagram can be obtained by clicking on the McCabe-Thiele icon on the button bar. We may also elect to select the McCabe-Thiele panel:


bles Gra	phs McCabe	-Thiele Rat	ing FUG					
Auto-s	elect key comp	oonents		Display				
Criterio	n Large	est mass trans	fer rate 💌					
O User s	elected key co	mponents		Copy da	ta			
Light k	ey N-but	ane	-	Lumped	1			
2								
Heavy	key Isope	ntane	~	Show s	ettings			
Channe	[r]	120	lov.	alux dalu	Lui -	[DV (m2/m)
Stage	KL	KH	RV	dy*/dx	xL	xH	E-O'Connell	
2	1.014777	0.519797	1.952257	0.65054	0.76905	0.23095	0.718316	7.0719E-07
2 3	1.014777 1.155319	0.519797 0.605433	1.952257 1.908252	0.65054 0.740473	0.76905 0.666473	0.23095 0.333527	0.718316 0.72224	7.0719E-07 7.3377E-07
2 3 4	1.014777 1.155319 1.276435	0.519797 0.605433 0.680929	1.952257 1.908252 1.874551	0.65054 0.740473 0.83261	0.76905 0.666473 0.572262	0.23095 0.333527 0.427738	0.718316 0.72224 0.725294	7.0719E-07 7.3377E-07 7.5558E-07
2 3 4 5	1.014777 1.155319 1.276435 1.371622	0.519797 0.605433 0.680929 0.741396	1.952257 1.908252 1.874551 1.850053	0.65054 0.740473 0.83261 0.913396	0.76905 0.666473 0.572262 0.497839	0.23095 0.333527 0.427738 0.502161	0.718316 0.72224 0.725294 0.727814	7.0719E-07 7.3377E-07 7.5558E-07 7.7217E-07
2 3 4 5 6	1.014777 1.155319 1.276435 1.371622 1.439241	0.519797 0.605433 0.680929 0.741396 0.784949	1.952257 1.908252 1.874551 1.850053 1.833547	0.65054 0.740473 0.83261 0.913396 0.973058	0.76905 0.666473 0.572262 0.497839 0.44713	0.23095 0.333527 0.427738 0.502161 0.55287	0.718316 0.72224 0.725294 0.727814 0.730447	7.0719E-07 7.3377E-07 7.5558E-07 7.7217E-07 7.8370E-07
2 3 4 5 6 7	1.014777 1.155319 1.276435 1.371622	0.519797 0.605433 0.680929 0.741396	1.952257 1.908252 1.874551 1.850053	0.65054 0.740473 0.83261 0.913396	0.76905 0.666473 0.572262 0.497839	0.23095 0.333527 0.427738 0.502161	0.718316 0.72224 0.725294 0.727814	7.0719E-07 7.3377E-07 7.5558E-07 7.7217E-07
2 3 4 5 6	1.014777 1.155319 1.276435 1.371622 1.439241	0.519797 0.605433 0.680929 0.741396 0.784949	1.952257 1.908252 1.874551 1.850053 1.833547	0.65054 0.740473 0.83261 0.913396 0.973058	0.76905 0.666473 0.572262 0.497839 0.44713	0.23095 0.333527 0.427738 0.502161 0.55287	0.718316 0.72224 0.725294 0.727814 0.730447	7.0719E-07 7.3377E-07 7.5558E-07 7.7217E-07 7.8370E-07
2 3 4 5 6 7	1.014777 1.155319 1.276435 1.371622 1.439241 1.554591	0.519797 0.605433 0.680929 0.741396 0.784949 0.860866	1.952257 1.908252 1.874551 1.850053 1.833547 1.805846	0.65054 0.740473 0.83261 0.913396 0.973058 1.076733	0.76905 0.666473 0.572262 0.497839 0.44713 0.366136	0.23095 0.333527 0.427738 0.502161 0.55287 0.633864	0.718316 0.72224 0.725294 0.727814 0.730447 0.735248	7.0719E-07 7.3377E-07 7.5558E-07 7.7217E-07 7.8370E-07 8.0308E-07
2 3 4 5 6 7 8	1.014777 1.155319 1.276435 1.371622 1.439241 1.554591 1.653115	0.519797 0.605433 0.680929 0.741396 0.784949 0.860866 0.92682	1.952257 1.908252 1.874551 1.850053 1.833547 1.805846 1.783641	0.65054 0.740473 0.83261 0.913396 0.973058 1.076733 1.190833	0.76905 0.666473 0.572262 0.497839 0.44713 0.366136 0.285654	0.23095 0.333527 0.427738 0.502161 0.55287 0.633864 0.714346	0.718316 0.72224 0.725294 0.727814 0.730447 0.735248 0.738052	7.0719E-07 7.3377E-07 7.5558E-07 7.7217E-07 7.8370E-07 8.0308E-07 8.1934E-07

ChemSep has automatically selected the two key components to be used as the basis for this diagram. It has made the correct determination of the two keys in this case; there are, however, situations where it is unable correctly to pick the right key components. For those cases it is possible for you to make your own selections as can be seen in the screen image above. For more information about the options available for McCabe-Thiele diagrams please consult the section on *Graphs*..

For systems with more than two components these diagrams can only be computed from the results of a computer simulation. The axes are defined by the relative mole fractions:

$$X = \frac{x_{LK}}{x_{LK} + x_{HK}} \qquad Y = \frac{y_{LK}}{y_{LK} + y_{HK}}$$

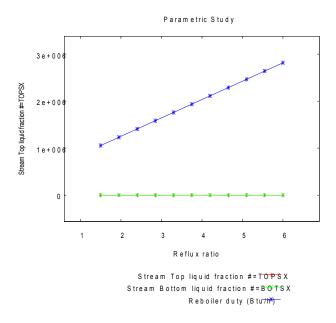
where the subscripts *LK* and *HK* refer to **light key** and **heavy key** respectively. The lines in the diagram have the same significance as would be expected from our knowledge of McCabe-Thiele diagrams for binary systems; the triangles corresponding to equilibrium stages.

McCabe-Thiele diagram N-butane - Isopentane

The fact that the staircase of triangles fails to come close to the corners of the diagram where X = Y = 1 and X = Y = 0 shows that the separation is not especially sharp. In addition, we can see that the feed is not in the best possible location.

Parametric Studies

It is worth asking what can be done to improve the separation obtained with this column. The parameters that have a significant effect on the separation are the numbers of stages in the sections above and below the feed, the reflux ratio, and a product flow rate (or reflux flow).

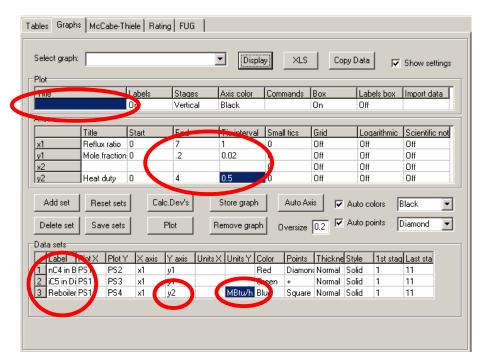

In order to see how changes in these variables affect the simulation we will use the Parametric Study feature of *ChemSep*.

Click on Analysis and then Parametric Study to bring up the appropriate window.

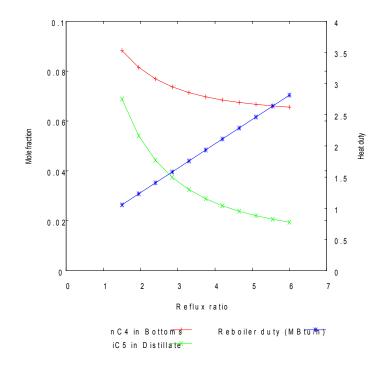
- Set the number of steps (problems to solve) in covering the range of variable values.
- Select variable(s) to vary. Here it is the reflux ratio. Set the start and end values.
- Select output variables to monitor. Note that the index numbers of the light and heavy key components must be typed in (to replace the # sign that appears on selection of these mole fractions).
- 4. Click Run to generate results. ChemSep will then carry out the specified number of column simulations and the results tabulated in the lower section of the window as shown.

Parametric St					<u>_ 🗆 ×</u>
-Select input varia	ables				
Number of step	ıs 🔟 🗖	Use old results	🔽 Automatic	🔲 Keep sep-files	Restore original
Add			•	Remove	Reset
Name	variable	Units	Value		Lind
Reflux stio	RR		2.578725	1.5	6
Select result varia	ables				
Add			_	Remove	Reset
Add 1				hemove	
Name	Beflue of		ii Stream Bottom	United and the Ope	
Variable	BB	TOPSX(4)	BOTSX(3)	QR	
Units		TOP ON(4)	0010/100	Btu/h	
Current Value	2.578725	0.0704775	0.0412710	14/7/42	
Carlorit Value	2.010120	0.0104110	0.0412110	1411142	
Results					
nesuits					
Run	Graph	Copy data	XL Grap	h 📔 Edit Grap	h
Run					
Run	Graph Reflux ratio			li Reboiler duty (Bt	
Run	Reflux ratio	Stream Top liqu	i Stream Bottom	li Reboiler duty (Bt Btu/h	
Run Step Units 1				li Reboiler duty (Bt Btu/h 1055217	
Run Step Units 1 2	Reflux ratio	Stream Top liqu	i Stream Bottom 0.068795 0.0541311	li Reboiler duty (Bt Btu/h	
Run Step Units 1	Reflux ratio	Stream Top liqu 0.0882194 0.0814942 0.076888	i Stream Bottom 0.068795 0.0541311 0.0442761	li Reboiler duty (Bt Btu/h 1055217	
Run Step Units 1 2 3 4	Reflux ratio	Stream Top liqu 0.0882194 0.0814942	i Stream Bottom 0.068795 0.0541311	li Reboiler duty (Bt Btu/h 1055217 1231756	
Run Step Units 1 2 3 4 5	Reflux ratio 1.5 1.95 2.4 2.85 3.3	Stream Top liqu 0.0882194 0.0814942 0.076888	i Stream Bottom 0.068795 0.0541311 0.0442761	li Reboiler duty (Bt Btu/h 1055217 1231756 1407849	
Run Step Units 1 2 3 4 5 6	Reflux ratio 1.5 1.95 2.4 2.85	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772	0.068795 0.0541311 0.0442761 0.0374347	li Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809	
Run Step Units 1 2 3 4 5 6 7	Reflux ratio 1.5 1.95 2.4 2.85 3.3	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811	0.068795 0.0541311 0.0442761 0.0374347 0.0325111	li Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751	
Run Step Units 1 2 3 4 5 6 7 8	Reflux ratio	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953	0.068795 0.0541311 0.0442761 0.0374347 0.0325111 0.0288468	li Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715	
Run Step Units 1 2 3 4 5 6 7	Reflux ratio	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953 0.0684267	0.068795 0.0541311 0.0442761 0.0374347 0.0325111 0.0288468 0.0260384	ii Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715 2111711	
Run Step Units 1 2 3 4 5 6 7 8	Reflux ratio 1.5 1.95 2.4 2.85 3.3 3.75 4.2 4.65	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953 0.0684267 0.067451	0.068795 0.0541311 0.0442761 0.0374347 0.0325111 0.0288468 0.0260384 0.0260384	ii Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715 2111711 2287742	
Run Step Units 1 2 3 4 5 6 7 8 9	Reflux ratio 1.5 1.95 2.4 2.85 3.3 3.75 4.2 4.65 5.1	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953 0.0684267 0.067451 0.0666861	Stream Bottom 0.068795 0.0541311 0.042761 0.0374347 0.0325111 0.0288468 0.0260384 0.023831 0.0220587	ii Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715 2111711 2287742 2463805	
Run Step Units 1 2 3 4 5 6 7 8 9 10	Reflux ratio 1.5 1.95 2.4 2.85 3.3 3.75 4.2 4.65 5.1 5.55	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953 0.0684267 0.067451 0.0666861 0.066076	Stream Bottom 0.068795 0.0541311 0.042761 0.0374347 0.0325111 0.0260384 0.0260384 0.0220587 0.0206086	ii Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715 2111711 2287742 2463805 2639895	
Run Step Units 1 2 3 4 5 6 7 8 9 10	Reflux ratio 1.5 1.95 2.4 2.85 3.3 3.75 4.2 4.65 5.1 5.55	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953 0.0684267 0.067451 0.0666861 0.066076	Stream Bottom 0.068795 0.0541311 0.042761 0.0374347 0.0325111 0.0260384 0.0260384 0.0220587 0.0206086	ii Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715 2111711 2287742 2463805 2639895	
Run Step Units 1 2 3 4 5 6 7 8 9 10	Reflux ratio 1.5 1.95 2.4 2.85 3.3 3.75 4.2 4.65 5.1 5.55	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953 0.0684267 0.067451 0.0666861 0.066076 0.0655821	0.068795 0.0541311 0.0442761 0.0374347 0.0325111 0.0288468 0.0260384 0.023831 0.0220587 0.0206086 0.0194034	ii Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715 2111711 2287742 2463805 2639895	
Run Step Units 1 2 3 4 5 6 7 8 9 10	Reflux ratio 1.5 1.95 2.4 2.85 3.3 3.75 4.2 4.65 5.1 5.55	Stream Top liqu 0.0882194 0.0814942 0.076888 0.0736772 0.0713811 0.0696953 0.0684267 0.067451 0.0666861 0.066076 0.0655821	Stream Bottom 0.068795 0.0541311 0.042761 0.0374347 0.0325111 0.0260384 0.0260384 0.0220587 0.0206086	ii Reboiler duty (Bt Btu/h 1055217 1231756 1407849 1583809 1759751 1935715 2111711 2287742 2463805 2639895	

5. Click *Graph* to display results.


Unfortunately this plot is not as clear as we would like; the reason being the rather different magnitudes of the heat duty and the product mole fractions that were selected as output variables.

Click on the *Edit Graph* button to bring up the plot configuration panel.

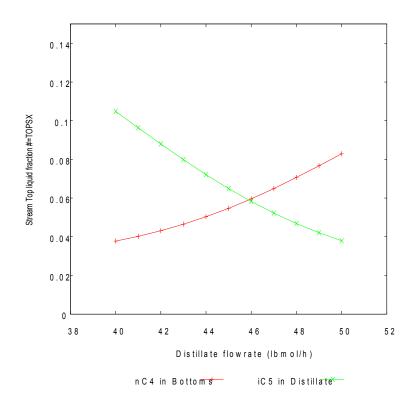

Select graph: Plot	ļ				I	- Dis	play	XLS	Co	py Data		Show setti	ings
Title			abels	Stage	s	Axis color	Com	mands	Box	Lab	els box	Import dat	a
Parametric S	tudy	ĺ)n	Vertica		Black			On	Off			_
Axes													
	Title		Start	End		Tic interva	al Sma	ill tics	Grid	Loc	arithmic	Scientific	not
x1	Reflux r	atio (0.6	6.9		1	0		Off	Off		Off	
y1	Stream	Top li -	563201.6	33792	210	1000000	0		Off	Off		Off	
x2							0		Off	Off		Off	
γ2							0		Off	Off		Off	
Add set Delete set	Rese Save	_		Dev's lot		Store grap emove gra		Auto Axi)versize		Auto co Auto po		Black Diamond	•
Data sets								,	,		,		
		Plot Y		r'axis	Units >	K Units Y	Color	Points	Thickne		1st stac	Last sta	
1 Stream 1		PS2		/1			Red	Diamon	Normal	Solid	1	11	
2 Stream El		PS3		/1			Green	+	Normal	Solid	1	11	
3 Reboiler I	PS1	PS4	x1	/1		Btu/h	Blue	Square	Normal	Solid	1	11	

We can change the various plot settings here so that we can obtain something more useful.

The first change that we make is to assign the heat duty to the right hand vertical axis. If we then click on *Auto Axis* and then on *Display* we will obtain a plot that is more or less acceptable. However, we have made additional changes to the variable labels, the units of the heat duties and the axis limits as shown in this screen image. We have also removed the title that would otherwise appear over the top of the plot. The places where we have made changes are highlighted in the image below.

Now, when we click on Display we see the following.

This figure shows how the mole fraction of *i*-pentane in the overhead and *n*-butane in the bottom product change with reflux ratio. For the base case considered above the reflux ratio is 2.58 (calculated from the results of the simulation). It is clear that increasing the reflux ratio has the desired effect of improving product purity. This improvement in purity is, however, accompanied by an increase in both the operating cost, indicated by the increase in reboiler duty, and capital cost, because a larger column would be needed to accommodate the increased internal flow. Note, however, that the curves that represent the mole fractions of the keys in the overhead and bottoms appear to flatten showing that product purity will not increase indefinitely as the reflux ratio increases. Further improvement in product purity can only be made by changing a different specification.

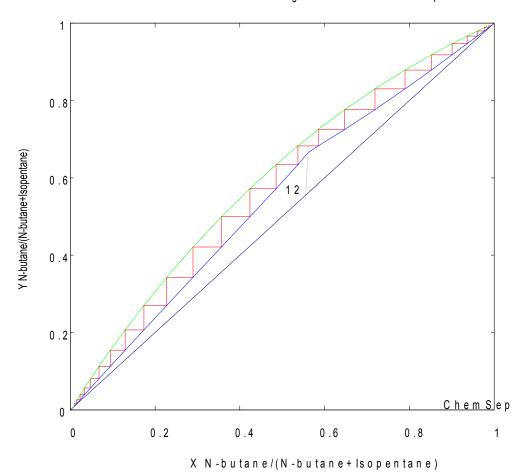

Accordingly, we now run a second parametric study, this time varying the distillate flow. Note that since this was chosen as a flexible specification before we must first change the column specifications so that we don't end up specifying the distillate flow rate twice (which will mean the simulation will crash). We first rerun the original simulation by setting the distillate flow rate (to the value used before) and the reflux ratio (to 2.5, close to the value computed from the results of the last simulation). The specification panel now looks like this:

✓ Analysis ✓ Pressures ✓ Heaters/Coolers ✓ Efficiencies ✓ Column specs Column Product Specifications									
Top product name	Тор	Condenser duty name	Qcondenser						
Top specification	Distillate flow rate	=	48.9000	(lbmol/h)					
Bottom product name	Bottom	Reboiler duty name	Qreboiler						
Bottom specification	Flexible	=	RR=2.5	formula					
				•					

The parametric study panel will look like this (the top part is what we create, the lower part is where the results appear after clicking on *Run*).

ielect input variab	ıdy iles					
Number of steps	11 🗆 U	lse old results	🔽 Automatic 🛛	Keep sep-files	🔽 Restore ori	gina
Add			•	Remove	Reset	
Name	Variable	Units	Value	Start/Valuelist	End	
Distillate flowrate	E D	lbmol/h	48.90003	40	50	
Select result variab	oles					
Add			•	Bemove	Reset	1
Add 1				hemove	neset	
Name	Distillate flowrate	Stream Top liqui	i Stream Bottom li			
Variable	D	TOPSX(4)	BOTSX(3)			
Units	lbmol/h					
Current Value	48.90003	0.0754773	0.0412718			
Run	Graph	Copy data	XL Graph	Edit Gra	bh	
Step	Distillate flowrati	Stream Top liqui	i Stream Bottom li			
Units	lbmol/h					
1	40.00004	0.0077550				
	40.00004	0.0377552	0.104791			
2	40.00004	0.0377552	0.104791 0.0963291			
2 3						
	40.99997	0.0402306	0.0963291			
3 4 5	40.99997 41.99999 43.00001 44.00002	0.0402306 0.0431211 0.0464777 0.0503385	0.0963291 0.0879858 0.0798858 0.0721567			
3 4 5 6	40.99997 41.99999 43.00001 44.00002 44.99996	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158			
3 4 5 6 7	40.99997 41.99999 43.00001 44.00002 44.99996 45.99998	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181 0.0596022	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158 0.0582534			
3 4 5 6 7 8	40.99997 41.99999 43.00001 44.00002 44.99996	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158			
3 4 5 6 7 8 9	40.99997 41.99999 43.00001 44.00002 44.99996 45.99998 46.99999 48.00001	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181 0.0596022 0.0649435 0.0706683	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158 0.0582534 0.052225 0.0468455			
3 4 5 6 7 8 9 10	40.99997 41.99999 43.00001 44.00002 44.99996 45.99998 46.99999 48.00001 49.00003	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181 0.0596022 0.0649435 0.0706683 0.0766866	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158 0.0582534 0.052225 0.0468455 0.042095			
3 4 5 6 7 8 9	40.99997 41.99999 43.00001 44.00002 44.99996 45.99998 46.99999 48.00001	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181 0.0596022 0.0649435 0.0706683	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158 0.0582534 0.052225 0.0468455			
3 4 5 6 7 8 9 10	40.99997 41.99999 43.00001 44.00002 44.99996 45.99998 46.99999 48.00001 49.00003	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181 0.0596022 0.0649435 0.0706683 0.0766866	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158 0.0582534 0.052225 0.0468455 0.042095			
3 4 5 6 7 8 9 10	40.99997 41.99999 43.00001 44.00002 44.99996 45.99998 46.99999 48.00001 49.00003	0.0402306 0.0431211 0.0464777 0.0503385 0.0547181 0.0596022 0.0649435 0.0706683 0.0766866 0.0829029	0.0963291 0.0879858 0.0798858 0.0721567 0.0649158 0.0582534 0.052225 0.0468455 0.042095			

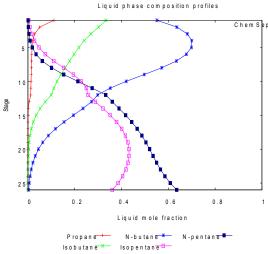
Proceed as before (click on *Graph* and then on *Edit Graph* to tidy up the result).

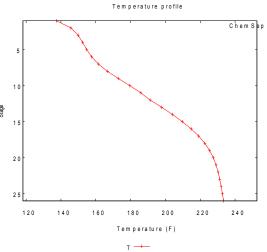


This figure shows what happens to product purity when we change the specified distillate flow rate. From this result we see that the best overall product purity is obtained when the distillate rate is 45 lbmol/h. On reflection this should not come as a surprise, the flow rate of the light key (*n*-butane) and all components with a higher volatility is 45 lbmol/h. However, even with the distillate flow rate set to 45 lbmol/h there remains room for improvement in the separation.

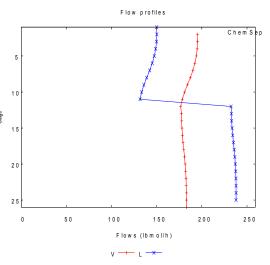
The other key design specifications here are the total number of stages and the location of the feed stage. In most cases, increasing the number of stages will improve the separation. On increasing the number of stages to 26, with the feed to stage 12, increasing the overhead vapor flow to 195 lbmol/h and decreasing the distillate rate to 45 lbmol/h we obtain the following products:

Mole flows lbmol/h)			
Propane	5	5	0
Isobutane	15	14.995	0.005
N-butan	25	24.8	0.196
Isopentane	20	0.168	19.83
N-pentane	35	0.033	34.97
Total molar flow	100	45	55


The McCabe-Thiele diagram for this configuration shown below appears to have the feed in the optimum location, and the product purities have improved.



McCabe-Thiele diagram N-butane - Isopentane


The composition profiles are more or less as expected. The components more volatile than the light key (*n*butane) are concentrated above the feed; those compounds less volatile than the heavy key (*i*-pentane) are concentrated below the feed. The mole fractions of the two keys exhibit maxima; the light key above the feed stage and the heavy key below the feed stage. The decrease in the mole fraction of light key over the top few stages is necessary to accommodate the increase in the composition of the lighter compounds. Similar arguments pertain to the decrease in the mole fraction of the heavy key over the stages towards the bottom of the column.

The temperature profile for this final case is shown here. It can be seen that the temperature increases from top to bottom of the column. This is normally the case in distillation columns (exceptions may occur with cold feeds or feeds with boiling points significantly lower than that of the mixture on stages above the feed stage).

Note the step change in the liquid flow rate around the feed stage. Had the feed been partially vaporized feed we would have observed changes in both vapor and liquid flows around the feed stage, and a saturated vapor feed would significantly change only the vapor flow profile. The slight (in this case) curvature in the *flow* profiles is due to enthalpy changes.

