What's New in ChemSep ${ }^{\text {TM }} 6.9$

February 2012

Harry Kooijman and Ross Taylor

In this document we identify and describe the most important new features in ChemSep.

1. New: ChemSep Lite now allows more compounds and more stages 1
2. New: Process Flowsheets with COCO and ChemSep 2
3. New: PPR78 Equation of State 3
4. New: Henry's Law 5
5. New: Monitor variables during solution 7
6. New: 400+ Compound Database 8

Process Flowsheet for manufacture of Cumene Inspired by work of W.L. Luyben (Ind. Eng. Chem. Res. 2010, 49, 717-734).

New: ChemSep Lite now allows more compounds and more stages

New in Version 6.9 of ChemSep Lite is an increase in both the maximum number of compounds and the maximum number of stages allowed in a simulation. The maximum number of compounds has increased from 10 to 40 and the maximum number of stages has increased from 150 to 300 .

ChemSep Lite is available free from http://chemsep.com.

New: Process Flowsheets with COCO and ChemSep

We have used the COCO flowsheet simulator created by Jasper van Baten (and available free from www.cocosimulator.org) to model a series of chemical process flowsheets. The new flowsheet simulation files are available on the ChemSep web site (http://chemsep.com/downloads/index.html). More information is available by clicking on the graphic image on the home page of the web site.

The new flowsheets represent the following processes:

1. THF-water heat integrated separation process
2. Cumene process (shown on page 1)
3. Methanol from Syngas
4. Butyl acetate process (shown below)

Several of the older flowsheets appearing on the same page have also been updated.

Process Flowsheet for manufacture of Butyl Acetate. Inspired by work of W.L. Luyben (Ind. Eng. Chem. Res. 2011, 50, 1247-1263).

New: Peng-Robinson (1978) Model and the PPR78 Equation of State

The Peng-Robinson Equation of State (EOS) is a modification of the concepts pioneered by Soave with a view towards improving the estimates of liquid density provided by the basic EOS.

The Peng-Robinson EOS is:

$$
P=\frac{R T}{V-b}-\frac{a}{V(V+b)+b(V-b)}
$$

where:

$$
\begin{gathered}
a=a\left(T_{c}\right) \alpha \\
a\left(T_{c}\right)=\frac{\Omega_{A} R T_{c}^{2}}{P_{c}} \\
b=\frac{\Omega_{B} R T_{c}}{P_{c}} \\
\sqrt{\alpha}=1+\left(0.37464+1.5422 \omega-0.26992 \omega^{2}\right)\left(1-\sqrt{T_{r}}\right) \\
\Omega_{A}=0.45724 \quad \Omega_{B}=0.07880
\end{gathered}
$$

In 1978 Peng and Robinson published a revision (shown below) to their model that now is also available in ChemSep (as a separate model).

$$
\sqrt{\alpha}=\left\{\begin{array}{cl}
1+\left(0.37464+1.5422 \omega-0.26992 \omega^{2}\right)\left(1-\sqrt{\mathrm{T}_{\mathrm{r}}}\right) & \text { if } \omega \leq 0.491 \\
1+\left(0.379642+1.48503 \omega-0.164423 \omega^{2}+0.01666 \omega^{3}\right)\left(1-\sqrt{\mathrm{T}_{\mathrm{r}}}\right) & \text { if } \omega>0.491
\end{array}\right\}
$$

For mixtures the parameters are obtained from the following simple "mixing rules":

$$
\begin{gathered}
a=\sum_{i=1}^{c} \sum_{j=1}^{c} x_{i} x_{j} a_{i, j} \\
b=\sum_{i=1}^{c} x_{i} b_{i}
\end{gathered}
$$

where

$$
a_{i, j}=\sqrt{a_{i} a_{j}}\left(1-k_{i, j}\right)
$$

$k_{i, j}$ is the binary interaction parameter for the i-j pair of compounds.

The last few years have seen the development of what has been called the Predictive Peng-Robinson Model or PPR78 by Jaubert and Colleagues from Nancy in France. The PPR78 model uses the 1978 version of the Peng-Robinson EOS as the basis to which is added a group contribution method for estimating the binary interaction parameters as a function only of temperature. The equations are too complicated to be summarized here; readers are referred the original literature for details. The PPR78 model may be selected from the Equation of State pull down menu on the Thermodynamics panel.

Note that the PPR78 model can predict binary interaction parameters only for mixtures containing the following compounds (or groups of compounds):

1. Aliphatic hydrocarbons including methane and branched chain alkanes.
2. Aromatic and cyclic hydrocarbons.
3. Mercaptans
4. Nitrogen and carbon dioxide

The illustrations below shows a phase envelope for a mixture of nitrogen and methane predicted by the PPR78 model alongside the standard PR equation of state. The numbers next to the letters PR refer to the value of the binary interaction parameter used for that particular calculation.

New: Henry's Law

While it was always possible to use Henry's law in older versions of ChemSep, it was never explicitly clear to users exactly how to do this. Thus, starting with version 6.9 and, as shown with the blue highlight in the screen image above, we have added a way to identify those compounds that are to be treated using Henry's law. Click in the checkbox to the left of words Henry's law components to bring up a checklist of all of the compounds in the system:

To select those compounds to be treated using Henry's law simply click in the check box to the left of each Henry's compound. The illustration also shows that we have loaded coefficients for the estimation of the Henry's law "constant" for nitrogen in water (but not yet for nitrogen in acetone).

Equilibrium for a Henry's law compound may be represented by:

$$
P y_{i} \phi_{i}^{V}=H_{i} x_{i} y_{i}^{*}
$$

where the unsymmetrical activity coefficient is defined by:

$$
\gamma_{i}^{*}=\gamma_{i} / \gamma_{i}^{\infty}
$$

where γ_{i}^{∞} is the activity coefficient at infinite dilution. In terms of the conventional K -value:

$$
K_{i}=\frac{y_{i}}{x_{i}}=\frac{H_{i} \mathcal{\gamma}_{i}^{*}}{\phi_{i}^{V} P}=\frac{H_{i} \gamma_{i} / \gamma_{i}^{\infty}}{\phi_{i}^{V} P}
$$

The Henry's law constant for a mixed solvent ChemSep uses the model implemented by Zhang and Chen:

$$
\ln \left(\frac{H_{i}}{\gamma_{i}^{\infty}}\right)=\sum_{A} w_{A} \ln \left(\frac{H_{i, A}}{\gamma_{i, A}^{\infty}}\right)
$$

where w_{A} is a volume fraction and the summation is taken over the solvent species only. The Henry's law coefficients in pure solvents (on the right hand side of the above) are given by:

$$
H_{i, a}(T, P)=H_{i, A}\left(T, P_{A}^{s a t}\right) \exp \left(\frac{1}{R T} \int_{P_{A}^{\text {sat }}}^{P} \bar{V}_{i, A} d p\right)
$$

The Henry's law constants are evaluated at the vapor pressure of the pure solvents and then corrected by the Poynting factors (the exponential term on the right hand side above). In practice the Henry's law coefficients on the right hand side are most often correlated as a function only of temperature, the form shown below being most common:

This fairly general form of Henry's law simplifies considerably in many cases. For example, if there is only one solvent (often the case), the activity coefficient for the solute (nitrogen in this case) is assumed to be unit, and the Poynting factor is ignored then:

$$
K_{i}=\frac{y_{i}}{x_{i}}=\frac{H_{i}}{P}
$$

This is the form of Henry's law used most often in practice. The Henry's law coefficients can be estimated from any of the many different temperature dependent functions in ChemSep. A commonly used representation of Henry's law data is:

$$
\ln H=A+B / T+C \ln T+D T^{E}
$$

Below we show the temperature profiles in a packed acetone absorber. The column is 4.5 m in height and is filled with IMTP 25 packing. It should be noted that the shape of the temperature profiles is a strong function of the water (solvent) flow rate.

A more comprehensive demonstration of the application of Henry's law to model an acetone absorber, along with a discussion of the shape of the temperature profiles seen in the above illustration is available in a tutorial on the ChemSep web site.

New: Variable Monitor

In ChemSep 6.9 it is possible to monitor the values of any column variable (flow rate, mole fraction, temperature, pressure, on any stage) as well as the values of certain key specified parameters such as the reflux ratio that are defined combinations of specified variables.

The selection of the monitored variables can be made on the Column Specifications panel, an example of which is shown below:

Click on the pull down arrow in the lower-right quadrant to select from a list of variables:

It is possible to select up to four variables to display during the solution. Here we have chosen the reflux ratio, the bottoms flow rate and the mole fraction of acetone in the distillate (which is one of the target specifications as shown above) and the mole fraction of isopropanol in the bottoms (which is the other - by implication anyway):

Now, when the file is executed you will see something similar to that shown below:

Running simulator - neq-Wankat_Ex_6D1.sep

Run level: Initialization Generating initial flow profiles Generating initial composition profiles Init 296 milliseconds Run level: Complete model					
Iteration	$\log \left(\mathrm{Erin}^{\text {/ }}\right.$ Tol $)$				
0	3.3535 RR=	$2.0000 \mathrm{~B}=$	$0.0001 \times \mathrm{D}(1)=$	$0.6993 \times \mathrm{B}(2)=$	1.0000
1	4.0417 RR=	$1.3103 \mathrm{~B}=$	$0.0001 \times \mathrm{D}(1)=$	$0.8906 \times \mathrm{B}(2)=$	0.9500
2	3.6829 RR=	$1.0376 \mathrm{~B}=$	$0.0001 \times \mathrm{D}(1)=$	$0.9490 \times \mathrm{B}(2)=$	0.9500
3	3.5670 RR=	$0.5898 \mathrm{~B}=$	$0.0001 \times \mathrm{D}(1)=$	$0.9500 \times 8(2)=$	0.9500
4	2.0930 RR=	$0.8848 \mathrm{~B}=$	$0.0001 \times \mathrm{D}(1)=$	$0.9500 \times 8(2)=$	0.9500
5	1.7952 RR=	1.3272 B=	$0.0001 \times \mathrm{D}(1)=$	$0.9500 \times 8(2)=$	0.9500
6	$1.9999 \mathrm{RR}=$	$1.9907 \mathrm{~B}=$	$0.0001 \times \mathrm{D}(1)=$	$0.9500 \times \mathrm{B}(2)=$	0.9500
7	1.3850 RR=	2.9861 B=	$0.0001 \times \mathrm{D}(1)=$	$0.9500 \times 8(2)=$	0.9500
8	$0.5695 \mathrm{RR}=$	$2.6711 \mathrm{~B}=$	$0.0001 \times \mathrm{D}(1)=$	$0.9500 \times \mathrm{B}(2)=$	0.9500
9	-1.4138 RR=	2.6671 B=	$0.0001 \times \mathrm{D}(1)=$	$0.9500 \times \mathrm{B}(2)=$	0.9500
Run level: Report Convergence obtained in 9 iterations Generating equilibrium data Time 94 milliseconds FixMem driver done					

Done

Each of the monitored variables appears following the = sign, to the left of which is some indication of the variable displayed. Thus, $R R=$ Reflux Ratio, $B=$ Bottoms flow rate, $X D(1)$ is the mole fraction of component 1 in the distillate, and $\mathrm{XB}(2)$ is the mole fraction of component 2 in the bottoms product.

Monitoring variables in this way is instructive, as well as providing a useful tool to help diagnose what is happening in a simulation that is hard (or impossible) to converge.

New: 400+ Compound Database

The number of compounds in the database has been increased from 194 (in versions up to 6.8) to 423. A complete list of the compounds that have been added to the ChemSep databank appears below.

Compounds Added to ChemSep Database

2-methyl-2-butanol
Nitrogen trioxide
Nitrogen tetroxide
Helium-4
Fluorine
Krypton
Xenon
Ozone
Carbonyl sulfide
Sulfur hexafluoride
Dimethyl sulfoxide
N-heptadecane
N -octadecane
N -nonadecane
N-heneicosane
N -docosane
N -tricosane
N-tetracosane
N -pentacosane
N -hexacosane
N-heptacosane
N-octacosane
N -nonacosane
Squalane
2-methylhexane
3-methylhexane
3-ethylpentane
2,2-dimethylpentane
2,3-dimethylpentane
2,4-dimethylpentane
3,3-dimethylpentane
2,2,3-trimethylbutane
2-methylheptane
3-methylheptane
4-methylheptane
3-ethylhexane
2,2-dimethylhexane
2,3-dimethylhexane
2,4-dimethylhexane
2,5-dimethylhexane
3,3-dimethylhexane
3,4-dimethylhexane
2-methyl-3-ethylpentane
3-methyl-3-ethylpentane
2,2,3,3-tetramethylbutane
2,2,5-trimethylhexane
2,4,4-trimethylhexane
3,3-diethylpentane
2,2,3,3-tetramethylpentane
2,2,3,4-tetramethylpentane

2,2,4,4-tetramethylpentane
2,3,3,4-tetramethylpentane
2-methyloctane
3-methyloctane
4-methyloctane
3-ethylheptane
2,2-dimethylheptane
3,3,5-trimethylheptane
2,2-dimethyloctane
3-methylnonane
2-methylnonane
4-methyInonane
5-methylnonane
Cis-2-hexene
Trans-2-hexene
1-octene
1-nonene
1-undecene
2-methyl-1-pentene
4-methyl-cis-2-pentene
4-methyl-trans-2-pentene Cyclohexene
1,1-dimethylcyclopentane
Cis-1,2-dimethylcyclopentane
Trans-1,2-dimethylcyclopentane
Cis-1,3-dimethylcyclopentane
Trans-1,3-dimethylcyclopentane
sopropylcyclopentane
1-methyl-1-ethylcyclopentane
N -butylcyclopentane
1,1-dimethylcyclohexane
Cis-1,2-dimethylcyclohexane
Trans-1,2-dimethylcyclohexane
Cis-1,3-dimethylcyclohexane
Trans-1,3-dimethylcyclohexane
Cis-1,4-dimethylcyclohexane
Trans-1,4-dimethylcyclohexane
Tert-butylcyclohexane
O-ethyltoluene
M-ethyltoluene
P-ethyltoluene
1,2,3-trimethylbenzene
1,2,4-trimethylbenzene
Mesitylene
Isobutylbenzene
Sec-butylbenzene
Tert-butylbenzene
O-cymene
M-cymene
P-cymene

O-diethylbenzene
M-diethylbenzene
P-diethylbenzene
1,2,3,4-tetramethylbenzene
1,2,3,5-tetramethylbenzene
1,2,4,5-tetramethylbenzene
2-ethyl-m-xylene
2-ethyl-p-xylene
4-ethyl-m-xylene
4-ethyl-o-xylene
1-methyl-3-n-propylbenzene
1-methyl-4-n-propylbenzene
P-diisopropylbenzene
Methyl isobutyl ketone
3-heptanone
4-heptanone
3-hexanone
2-pentanone
2-hexanone
2-heptanone
5-methyl-2-hexanone
3,3-dimethyl-2-butanone
Diisobutyl ketone
Diisopropyl ketone
Propanal
Butanal
Pentanal
Hexanal
Heptanal
Diisopropyl ether
Di-n-butyl ether
Di-sec-butyl ether
Methyl ethyl ether
Methyl n-propyl ether
sopropyl butyl ether
Methyl isobutyl ether
Methyl isopropyl ether
Tert-butyl ethyl ether
Ethyl tert-pentyl ether
Butyl vinyl ether
Anisole
Isopropyl acetate
N-butyl acetate
Isobutyl acetate
N-pentyl acetate
Vinyl acetate
N -hexyl acetate
1-pentanol
2-pentanol
2-methyl-1-butanol

2,2-dimethyl-1-propanol	Diisopropylamine	P-toluic acid
1--hexanol	N-aminoethyl piperazine	Salicylic acid
1-heptanol	Diethylenetriamine	Adipic acid
1,4-butanediol	N-aminoethyl lethanolamine	Phthalic acid
Methyl mercaptan	P-phenylenediamine	Maleic acid
N-propyl mercaptan	Piperazine	Terephthalic acid
Tert-butyl mercaptan	Methylethanolamine	Acetic anhydride
Isobutyl mercaptan	Dimethylethanolamine	Maleic anhydride
Sec-butyl mercaptan	Nitromethane	Ketene
N-hexyl mercaptan	Nitroethane	Methyl methacrylate
Methyl ethyl sulfide	1-nitropropane	Dimethyl terephthalate
Methyl n-propyl sulfide	2-nitropropane	1,2-propylene oxide
Methyl t-butyl sulfide	1-nitrobutane	Cumene hydroperoxide
Methyl t-pentyl sulfide	O-nitrotoluene	Propionitrile
Di-n-propyl sulfide	P-nitrotoluene	Dimethyl carbonate
Diethyl sulfide	M-nitrotoluene	DiEthyl Carbonate
Diethyl disulfide	2,4-dinitrotoluene	Methyl Ethyl Carbonate
Dimethyl disulfide	2,6-dinitrotoluene	Methyl Phenyl Carbonate
Di-n-propyl disulfide	3,4-dinitrotoluene	Ethyl Phenyl Carbonate
Di-tert-butyl disulfide	2,5-dinitrotoluene	DiPhenyl Carbonate
Ethyl methyl disulfide	3,5-dinitrotoluene	Ethylene carbonate
Ethyl propyl disulfide	2,4,6-trinitrotoluene	Propylene carbonate
Diphenyl disulfide	Oxalic acid	2-methyl-1-heptene
Monoethanolamine	Acrylic acid	2-Methoxy-2-Methyl-Heptane
Diethanolamine	Methacrylic acid	2-Methyl-2-Heptanol
Triethanolamine	Benzoic acid	Methylal
Ethylenediamine	O-toluic acid	

